Neurotrophic factors in the tongue: Expression patterns, biological activity, relation to innervation and studies of neurotrophin knockout mice

被引:39
作者
Nosrat, CA [1 ]
机构
[1] Karolinska Inst, Dept Neurosci, S-17177 Stockholm, Sweden
来源
OLFACTION AND TASTE XII: AN INTERNATIONAL SYMPOSIUM | 1998年 / 855卷
关键词
D O I
10.1111/j.1749-6632.1998.tb10544.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
How taste buds develop and how they become innervated has been a matter of debate for a long time. Brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT3) mRNA expression patterns suggested a possible involvement in lingual gustatory and somatosensory innervation. Studies of null-mutated mice showed that BDNF-/- mice had few abnormal taste buds and were unable to discriminate between primary tastes. NT3(-/-) mice had a severe loss of lingual somatosensory innervation. These novel findings may have clinical implications in rare human conditions such as familial dysautonomia and/or in more common cases of problems with loss of taste and sensation in the mouth such as those seen after injury to the nerves, either by accident or following oral/facial surgery. Knowledge about which proteins that are required to stimulate nerve fibers to grow into mucous membranes of the oral cavity during development suggests that these same proteins might become helpful in stimulating regeneration of injured nerves in patients, perhaps helping them to regain lost taste and sensory functions. Here, the presence of glial cell-derived neurotrophic factor (GDNF) families of neurotrophic factors and receptors in the tongue is also discussed. Further, a model for the development and innervation of taste buds in mammals is proposed.
引用
收藏
页码:28 / 49
页数:22
相关论文
共 106 条
[1]  
AFSEGERSTAD CH, 1989, CHEM SENSES, V14, P335
[2]   TRANSDUCTION IN TASTE RECEPTOR-CELLS REQUIRES CAMP-DEPENDENT PROTEIN-KINASE [J].
AVENET, P ;
HOFMANN, F ;
LINDEMANN, B .
NATURE, 1988, 331 (6154) :351-354
[3]   TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret [J].
Baloh, RH ;
Tansey, MG ;
Golden, JP ;
Creedon, DJ ;
Heuckeroth, RO ;
Keck, CL ;
Zimonjic, DB ;
Popescu, NC ;
Johnson, EM ;
Milbrandt, J .
NEURON, 1997, 18 (05) :793-802
[4]   NEUROTROPHIC FACTORS AND THEIR RECEPTORS [J].
BARBACID, M .
CURRENT OPINION IN CELL BIOLOGY, 1995, 7 (02) :148-155
[5]  
BARDE Y-A, 1990, Progress in Growth Factor Research, V2, P237, DOI 10.1016/0955-2235(90)90021-B
[6]   PURIFICATION OF A NEW NEUROTROPHIC FACTOR FROM MAMMALIAN BRAIN [J].
BARDE, YA ;
EDGAR, D ;
THOENEN, H .
EMBO JOURNAL, 1982, 1 (05) :549-553
[7]   EMBRYONIC ORIGIN OF AMPHIBIAN TASTE-BUDS [J].
BARLOW, LA ;
NORTHCUTT, RG .
DEVELOPMENTAL BIOLOGY, 1995, 169 (01) :273-285
[8]   NEUROTROPHIN-5 - A NOVEL NEUROTROPHIC FACTOR THAT ACTIVATES TRK AND TRKB [J].
BERKEMEIER, LR ;
WINSLOW, JW ;
KAPLAN, DR ;
NIKOLICS, K ;
GOEDDEL, DV ;
ROSENTHAL, A .
NEURON, 1991, 7 (05) :857-866
[9]   HEDGEHOG AND BMP GENES ARE COEXPRESSED AT MANY DIVERSE SITES OF CELL-CELL INTERACTION IN THE MOUSE EMBRYO [J].
BITGOOD, MJ ;
MCMAHON, AP .
DEVELOPMENTAL BIOLOGY, 1995, 172 (01) :126-138
[10]  
BUCHMAN VL, 1993, DEVELOPMENT, V118, P989