On integrable Doebner-Goldin equations

被引:18
作者
Nattermann, P [1 ]
Zhdanov, R [1 ]
机构
[1] TECH UNIV CLAUSTHAL,ARNOLD SOMMERFELD INST MATH PHYS,D-38678 CLAUSTHAL ZELLERF,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 11期
关键词
D O I
10.1088/0305-4470/29/11/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We integrate sub-families of a family of nonlinear Schrodinger equations proposed by Doebner and Goldin in the (1 + 1)-dimensional case which have exceptional Lie symmetries. Since the method of integration involves non-local transformations of dependent and independent variables, general solutions obtained include implicitly determined functions. By properly specifying one of the arbitrary functions contained in these solutions, we obtain broad classes of explicit square integrable solutions. The physical significance and some analytical properties of the solutions obtained are briefly discussed.
引用
收藏
页码:2869 / 2886
页数:18
相关论文
共 42 条
[1]  
ANDERSON RL, 1979, LIEBACKLUND TRANSFOR
[2]  
[Anonymous], UKRAINIAN MATH J
[3]   ON A CLASS OF HOMOGENEOUS NONLINEAR SCHRODINGER-EQUATIONS [J].
AUBERSON, G ;
SABATIER, PC .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :4028-4041
[4]   NONLINEAR CORRECTIONS TO QUANTUM-MECHANICS FROM QUANTUM-GRAVITY [J].
BERTOLAMI, O .
PHYSICS LETTERS A, 1991, 154 (5-6) :225-229
[5]  
Burgers J. M., 1940, P R NETH ACAD SCI, V43, P1
[6]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[7]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[8]  
COURANT R, 1962, METHODS MATH PHYSICS, V2
[9]   DOEBNER-GOLDIN NONLINEAR MODEL OF QUANTUM-MECHANICS FOR A DAMPED OSCILLATOR IN A MAGNETIC-FIELD [J].
DODONOV, VV ;
MIZRAHI, SS .
PHYSICS LETTERS A, 1993, 181 (02) :129-134
[10]  
Doebner H. D., 1996, QUANTIZATION COHEREN, P27