Targeting of proteins to the Golgi apparatus

被引:66
作者
Gleeson, PA [1 ]
机构
[1] Monash Univ, Sch Med, Dept Pathol & Immunol, Prahran, Vic 3181, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1007/s004180050252
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The proteins that reside in the Golgi carry out functions associated with post-translational modifications, including glycosylation and proteolytic processing, membrane transport, recycling of endoplasmic reticulum proteins and maintenance of the structural organisation of the organelle itself. The latter includes Golgi stacking, interconnections between stacks and the microtubule-dependent positioning of the organelle within the cell. There are a number of distinct groups of Golgi membrane proteins, including glycosyltransferases, recycling trans-Golgi network (TGN) proteins, peripheral membrane proteins and receptors. Considerable effort has been directed at understanding the basis of the localisation of Golgi glycosyltransferases and recycling TGN proteins; in both cases there is increasing evidence that multiple signals may be involved in their specific localisation. A number of models for the Golgi retention of glycosyltransferases have been proposed including oligomerisation, lipid-mediated sorting and intra-Golgi retrograde transport. More information is required to determine the contribution of each of these potential mechanisms in the targeting of different glycosyltransferases. Future work is also likely to focus on the relationship between the localisation of resident Golgi proteins and the maintenance of Golgi structure.
引用
收藏
页码:517 / 532
页数:16
相关论文
共 177 条
[11]   Two GTPase isoforms, ypt31p and ypt32p, are essential for Golgi function in yeast [J].
Benli, M ;
Doring, F ;
Robinson, DG ;
Yang, XP ;
Gallwitz, D .
EMBO JOURNAL, 1996, 15 (23) :6460-6475
[12]   KEX2-DEPENDENT INVERTASE SECRETION AS A TOOL TO STUDY THE TARGETING OF TRANSMEMBRANE PROTEINS WHICH ARE INVOLVED IN ER-]GOLGI TRANSPORT IN YEAST [J].
BOEHM, J ;
ULRICH, HD ;
OSSIG, R ;
SCHMITT, HD .
EMBO JOURNAL, 1994, 13 (16) :3696-3710
[13]   TGN38 IS MAINTAINED IN THE TRANS-GOLGI NETWORK BY A TYROSINE-CONTAINING MOTIF IN THE CYTOPLASMIC DOMAIN [J].
BOS, K ;
WRAIGHT, C ;
STANLEY, KK .
EMBO JOURNAL, 1993, 12 (05) :2219-2228
[14]   CHOLESTEROL AND THE GOLGI-APPARATUS [J].
BRETSCHER, MS ;
MUNRO, S .
SCIENCE, 1993, 261 (5126) :1280-1281
[15]   Two separate signals act independently to localize a yeast late Golgi membrane protein through a combination of retrieval and retention [J].
Bryant, NJ ;
Stevens, TH .
JOURNAL OF CELL BIOLOGY, 1997, 136 (02) :287-297
[16]  
BURKE J, 1992, J BIOL CHEM, V267, P24433
[17]  
BURKE J, 1994, J BIOL CHEM, V269, P12049
[18]   GENE AMPLIFICATION OF THE MENKES (MNK, ATP7A) P-TYPE ATPASE GENE OF CHO CELLS IS ASSOCIATED WITH COPPER RESISTANCE AND ENHANCED COPPER EFFLUX [J].
CAMAKARIS, J ;
PETRIS, MJ ;
BAILEY, L ;
SHEN, PY ;
LOCKHART, P ;
GLOVER, TW ;
BARCROFT, CL ;
PATTON, J ;
MERCER, JFB .
HUMAN MOLECULAR GENETICS, 1995, 4 (11) :2117-2123
[19]   THE FUNCTIONING OF THE YEAST GOLGI-APPARATUS REQUIRES AN ER PROTEIN ENCODED BY ANP1, A MEMBER OF A NEW FAMILY OF GENES AFFECTING THE SECRETORY PATHWAY [J].
CHAPMAN, RE ;
MUNRO, S .
EMBO JOURNAL, 1994, 13 (20) :4896-4907
[20]   RETRIEVAL OF TGN PROTEINS FROM THE CELL-SURFACE REQUIRES ENDOSOMAL ACIDIFICATION [J].
CHAPMAN, RE ;
MUNRO, S .
EMBO JOURNAL, 1994, 13 (10) :2305-2312