Markov chain Monte Carlo without likelihoods

被引:746
作者
Marjoram, P
Molitor, J
Plagnol, V
Tavaré, S
机构
[1] Univ So Calif, Dept Biol Sci, Program Mol & Computat Biol, Los Angeles, CA 90089 USA
[2] Univ So Calif, Div Biostat, Dept Prevent Med, Keck Sch Med, Los Angeles, CA 90089 USA
关键词
D O I
10.1073/pnas.0306899100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many stochastic simulation approaches for generating observations from a posterior distribution depend on knowing a likelihood function. However, for many complex probability models, such likelihoods are either impossible or computationally prohibitive to obtain. Here we present a Markov chain Monte Carlo method for generating observations from a posterior distribution without the use of likelihoods. it can also be used in frequentist applications, in particular for maximum-likelihood estimation. The approach is illustrated by an example of ancestral inference in population genetics. A number of open problems are highlighted in the discussion.
引用
收藏
页码:15324 / 15328
页数:5
相关论文
共 22 条
  • [21] EXTENSIVE MITOCHONDRIAL DIVERSITY WITHIN A SINGLE AMERINDIAN TRIBE
    WARD, RH
    FRAZIER, BL
    DEWJAGER, K
    PAABO, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (19) : 8720 - 8724
  • [22] Weiss G, 1998, GENETICS, V149, P1539