Exudate-based diabetic macular edema detection in fundus images using publicly available datasets

被引:237
作者
Giancardo, Luca [1 ,2 ]
Meriaudeau, Fabrice [1 ]
Karnowski, Thomas P. [2 ]
Li, Yaqin [3 ]
Garg, Seema [4 ]
Tobin, Kenneth W., Jr. [5 ]
Chaum, Edward [3 ]
机构
[1] Univ Burgundy, F-71200 Le Creusot, France
[2] Oak Ridge Natl Lab, Imaging Signals & Machine Learning Grp, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Hamilton Eye Inst, Memphis, TN 38163 USA
[4] Univ N Carolina, Dept Ophthalmol, Chapel Hill, NC 27514 USA
[5] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA
关键词
Exudates segmentation; Feature selection; Lesion probability; Automatic diagnosis; Wavelets; AUTOMATIC DETECTION; MATHEMATICAL MORPHOLOGY; CONTRAST NORMALIZATION; NEURAL-NETWORK; RETINAL IMAGES; RETINOPATHY; SEGMENTATION; PHOTOGRAPHS;
D O I
10.1016/j.media.2011.07.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, we introduce a new methodology for diagnosis of DME using a novel set of features based on colour, wavelet decomposition and automatic lesion segmentation. These features are employed to train a classifier able to automatically diagnose DME through the presence of exudation. We present a new publicly available dataset with ground-truth data containing 169 patients from various ethnic groups and levels of DME. This and other two publicly available datasets are employed to evaluate our algorithm. We are able to achieve diagnosis performance comparable to retina experts on the MESS-IDOR (an independently labelled dataset with 1200 images) with cross-dataset testing (e.g., the classifier was trained on an independent dataset and tested on MESSIDOR). Our algorithm obtained an AUC between 0.88 and 0.94 depending on the dataset/features used. Additionally, it does not need ground truth at lesion level to reject false positives and is computationally efficient, as it generates a diagnosis on an average of 4.4 s (9.3 s, considering the optic nerve localisation) per image on an 2.6 GHz platform with an unoptimised Matlab implementation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 226
页数:11
相关论文
共 44 条
[21]   Practical Considerations for Optic Nerve Location in Telemedicine [J].
Karnowski, T. P. ;
Aykac, D. ;
Chaum, E. ;
Giancardo, L. ;
Li, Y. ;
Tobin, K. W., Jr. ;
Abramoff, M. D. .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :6205-+
[22]  
Kauppi T., 2007, P BRIT MACHINE VISIO, V1, P1, DOI DOI 10.5244/C.21
[23]   COMPUTER DETERMINATION OF CONSTITUENT STRUCTURE OF BIOLOGICAL IMAGES [J].
KIRSCH, RA .
COMPUTERS AND BIOMEDICAL RESEARCH, 1971, 4 (03) :315-&
[24]   Automated feature extraction in color retinal images by a model based approach [J].
Li, HQ ;
Chutatape, O .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (02) :246-254
[25]  
Li Y., 2011, TELEMEDICINE EHEALTH, P17, DOI 10.1089tmj.2011.0004
[26]  
Mallat S., 1999, WAVELET TOUR SIGNAL, V2nd, DOI [10.1016/B978-012466606-1/50004-0, DOI 10.1016/B978-012466606-1/50004-0]
[27]  
Messidor, 2010, METH EV SEGM IND TEC
[28]   Automatic detection of red lesions in digital color fundus photographs [J].
Niemeijer, M ;
van Ginneken, B ;
Staal, J ;
Suttorp-Schulten, MSA ;
Abràmoff, MD .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (05) :584-592
[29]   Comparative study of retinal vessel segmentation methods on a new publicly available database [J].
Niemeijer, M ;
Staal, J ;
van Ginneken, B ;
Loog, M ;
Abràmoff, MD .
MEDICAL IMAGING 2004: IMAGE PROCESSING, PTS 1-3, 2004, 5370 :648-656
[30]   Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis [J].
Niemeijer, Meindert ;
van Ginneken, Bram ;
Russell, Stephen R. ;
Suttorp-Schulten, Maria S. A. ;
Abramoff, Michael D. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2007, 48 (05) :2260-2267