Homeostatic Synaptic Plasticity: Local and Global Mechanisms for Stabilizing Neuronal Function

被引:744
作者
Turrigiano, Gina [1 ,2 ]
机构
[1] Brandeis Univ, Dept Biol, Waltham, MA 02493 USA
[2] Brandeis Univ, Ctr Behav Genom, Waltham, MA 02493 USA
来源
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY | 2012年 / 4卷 / 01期
关键词
ACTIVITY-DEPENDENT REGULATION; LONG-TERM POTENTIATION; AMPA RECEPTOR; QUANTAL AMPLITUDE; VESICULAR GLUTAMATE; ACTIVITY-BLOCKADE; OCULAR DOMINANCE; SCALING REQUIRES; NEURAL ACTIVITY; VISUAL-CORTEX;
D O I
10.1101/cshperspect.a005736
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Neural circuits must maintain stable function in the face of many plastic challenges, including changes in synapse number and strength, during learning and development. Recentwork has shown that these destabilizing influences are counterbalanced by homeostatic plasticity mechanisms that act to stabilize neuronal and circuit activity. One such mechanism is synaptic scaling, which allows neurons to detect changes in their own firing rates through a set of calcium-dependent sensors that then regulate receptor trafficking to increase or decrease the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms may allow local changes in synaptic activation to generate local synaptic adaptations, and network-wide changes in activity to generate network-wide adjustments in the balance between excitation and inhibition. The signaling pathways underlying these various forms of homeostatic plasticity are currently under intense scrutiny, and although dozens of molecular pathways have now been implicated in homeostatic plasticity, a clear picture of how homeostatic feedback is structured at the molecular level has not yet emerged. On a functional level, neuronal networks likely use this complex set of regulatory mechanisms to achieve homeostasis over a wide range of temporal and spatial scales.
引用
收藏
页数:17
相关论文
共 109 条
[81]   Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity [J].
Seeburg, Daniel P. ;
Feliu-Mojer, Monica ;
Gaiottino, Johanna ;
Pak, Daniel T. S. ;
Sheng, Morgan .
NEURON, 2008, 58 (04) :571-583
[82]  
SHARPLESS SK, 1975, FED PROC, V34, P1990
[83]   Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors [J].
Shepherd, Jason D. ;
Rumbaugh, Gavin ;
Wu, Jing ;
Chowdhury, Shoalb ;
Plath, Niels ;
Kuhl, Dietmar ;
Huganir, Richard L. ;
Worley, Paul F. .
NEURON, 2006, 52 (03) :475-484
[84]   The MicroRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions [J].
Simon, David J. ;
Madison, Jon M. ;
Conery, Annie L. ;
Thompson-Peer, Katherine L. ;
Soskis, Michael ;
Ruvkun, Gary B. ;
Kaplan, Joshua M. ;
Kim, John K. .
CELL, 2008, 133 (05) :903-915
[85]  
Stein V, 2003, J NEUROSCI, V23, P5503
[86]   Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression [J].
Steinberg, JP ;
Takamiya, K ;
Shen, Y ;
Xia, J ;
Rubio, ME ;
Yu, S ;
Jin, WY ;
Thomas, GM ;
Linden, DJ ;
Huganir, RL .
NEURON, 2006, 49 (06) :845-860
[87]   Tumor Necrosis Factor-α Signaling Maintains the Ability of Cortical Synapses to Express Synaptic Scaling [J].
Steinmetz, Celine C. ;
Turrigiano, Gina G. .
JOURNAL OF NEUROSCIENCE, 2010, 30 (44) :14685-14690
[88]   Synaptic scaling mediated by glial TNF-α [J].
Stellwagen, D ;
Malenka, RC .
NATURE, 2006, 440 (7087) :1054-1059
[89]   Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α [J].
Stellwagen, D ;
Beattie, EC ;
Seo, JY ;
Malenka, RC .
JOURNAL OF NEUROSCIENCE, 2005, 25 (12) :3219-3228
[90]   PSD-95 and PSD-93 Play Critical But Distinct Roles in Synaptic Scaling Up and Down [J].
Sun, Qian ;
Turrigiano, Gina G. .
JOURNAL OF NEUROSCIENCE, 2011, 31 (18) :6800-6808