Li10Si0.3Sn0.7P2S12 - A low-cost and low-grain-boundary-resistance lithium superionic conductor

被引:127
作者
Bron, Philipp [1 ]
Dehnen, Stefanie
Roling, Bernhard
机构
[1] Univ Marburg, Fachbereich Chem, D-35043 Marburg, Germany
关键词
Superionic; Solid electrolyte; Lithium ionic conductor; Chalcogenides; IONIC-CONDUCTIVITY; THIO-LISICON; ELECTROLYTES; DYNAMICS; LI10GEP2S12; BATTERY; SN; SI;
D O I
10.1016/j.jpowsour.2016.08.115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite remarkable recent advances in the field of solid electrolytes for lithium ion batteries, there is still considerable room for improvements with respect to ionic conductivity, cost and electrochemical stability. This study tests systematically how much Sn in the superionic conductor Li10SnP2S12 can be replaced by Si or Al, while retaining its tetragonal structure. For comparison, also the known superionic conductors Li10SnP2S12, Li10GeP2S12, and Li10SiP2S12 are synthesized and characterized with respect to their grain and grain boundary resistances. The results show that due to the negligible grain boundary resistance of the new compound Li10Si0.3Sn0.7P2S12, its total Li+ ion conductivity is only 10-20% lower than that of the expensive superionic conductor Li10GeP2S12 and about four times higher than that of Li10SiP2S12. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:530 / 535
页数:6
相关论文
共 22 条
[1]   Ion dynamics in the argyrodite compound Ag7GeSe5I:: non-Arrhenius behavior and complete conductivity spectra [J].
Belin, R ;
Zerouale, A ;
Pradel, A ;
Ribes, M .
SOLID STATE IONICS, 2001, 143 (3-4) :445-455
[2]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[3]   THE ANALYSIS OF ELECTRODE IMPEDANCES COMPLICATED BY THE PRESENCE OF A CONSTANT PHASE ELEMENT [J].
BRUG, GJ ;
VANDENEEDEN, ALG ;
SLUYTERSREHBACH, M ;
SLUYTERS, JH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 176 (1-2) :275-295
[4]   Diffusion paths formation for Cu+ ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition [J].
Gagor, A ;
Pietraszko, A ;
Kaynts, D .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (11) :3366-3375
[5]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/NMAT3066, 10.1038/nmat3066]
[6]   Lithium ionic conductor thio-LISICON -: The Li2S-GeS2-P2S5 system [J].
Kanno, R ;
Maruyama, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A742-A746
[7]   High-power all-solid-state batteries using sulfide superionic conductors [J].
Kato, Yuki ;
Hori, Satoshi ;
Saito, Toshiya ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Mitsui, Akio ;
Yonemura, Masao ;
Iba, Hideki ;
Kanno, Ryoji .
NATURE ENERGY, 2016, 1
[8]   Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1-xMx)P2S12 (M = Si, Sn) [J].
Kato, Yuki ;
Saito, Ryoko ;
Sakano, Mitsuru ;
Mitsui, Akio ;
Hirayama, Masaaki ;
Kanno, Ryoji .
JOURNAL OF POWER SOURCES, 2014, 271 :60-64
[9]   Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12 [J].
Kato, Yuki ;
Kawamoto, Koji ;
Kanno, Ryoji ;
Hirayama, Masaaki .
ELECTROCHEMISTRY, 2012, 80 (10) :749-751
[10]   A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes [J].
Kuhn, Alexander ;
Gerbig, Oliver ;
Zhu, Changbao ;
Falkenberg, Frank ;
Maier, Joachim ;
Lotsch, Bettina V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (28) :14669-14674