Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands

被引:423
作者
Susumu, Kimihiro
Uyeda, H. Tetsuo
Medintz, Igor L.
Pons, Thomas
Delehanty, James B.
Mattoussi, Hedi [1 ]
机构
[1] USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA
[2] USN, Res Lab, Ctr Biomol Sci & Engn, Washington, DC 20375 USA
关键词
D O I
10.1021/ja0749744
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have designed and synthesized a series of modular ligands based on poly(ethylene glycol) (PEG) coupled with functional terminal groups to promote water-solubility and biocompatibility of quantum dots (QDs). Each ligand is comprised of three modules: a PEG single chain to promote hydrophilicity, a dihydrolipoic acid (DHLA) unit connected to one end of the PEG chain for strong anchoring onto the QD surface, and a potential biological functional group (biotin, carboxyl, and amine) at the other end of the PEG. Water-soluble QDs capped with these functional ligands were prepared via cap exchange with the native hydrophobic caps. Homogeneous QD solutions that are stable over extended periods of time and over a broad pH range were prepared. Surface binding assays and cellular internalization and imaging showed that QDs capped with DHLA-PEG-biotin strongly interacted with either NeutrAvidin immobilized on surfaces or streptavidin coupled to proteins which were subsequently taken up by live cells. EDC coupling in aqueous buffer solutions was also demonstrated using resonance energy transfer between DHLA-PEG-COOH-functionalized QDs and an amine-terminated dye. The new functional surface ligands described here provide not only stable and highly water-soluble QDs but also simple and easy access to various biological entities.
引用
收藏
页码:13987 / 13996
页数:10
相关论文
共 35 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[3]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[4]   Biotinylated CdSe/ZnSe nanocrystals for specific fluorescent labeling [J].
Charvet, N ;
Reiss, P ;
Roget, A ;
Dupuis, A ;
Grünwald, D ;
Carayon, S ;
Chandezon, F ;
Livache, T .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (17) :2638-2642
[5]   Biocompatible heterostructured nanoparticles for multimodal biological detection [J].
Choi, Jin-sil ;
Jun, Young-wook ;
Yeon, Soo-In ;
Kim, Hyoung Chan ;
Shin, Jeon-Soo ;
Cheon, Jinwoo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (50) :15982-15983
[6]   Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins [J].
Clapp, Aaron R. ;
Goldman, Ellen R. ;
Mattoussi, Hedi .
NATURE PROTOCOLS, 2006, 1 (03) :1258-1266
[7]   Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J].
Clapp, AR ;
Medintz, IL ;
Mauro, JM ;
Fisher, BR ;
Bawendi, MG ;
Mattoussi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :301-310
[8]   Forster resonance energy transfer investigations using quantum-dot fluorophores [J].
Clapp, AR ;
Medintz, IL ;
Mattoussi, H .
CHEMPHYSCHEM, 2006, 7 (01) :47-57
[9]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[10]   Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery [J].
Delehanty, James B. ;
Medintz, Igor L. ;
Pons, Thomas ;
Brunel, Florence M. ;
Dawson, Philip E. ;
Mattoussi, Hedi .
BIOCONJUGATE CHEMISTRY, 2006, 17 (04) :920-927