Application of Silver-Coated Magnetic Microspheres to a SERS-Based Optofluidic Sensor

被引:80
作者
Han, Byunghee [1 ]
Choi, Namhyun [1 ]
Kim, Ki Hyung [1 ]
Lim, Dong Woo [1 ]
Choo, Jaebum [1 ]
机构
[1] Hanyang Univ, Dept Bionano Engn, Ansan 426791, South Korea
基金
新加坡国家研究基金会;
关键词
ENHANCED RAMAN-SCATTERING; SENSITIVE TRACE ANALYSIS; ON-A-CHIP; NANOPARTICLE ARRAYS; SIGNAL ENHANCEMENT; GOLD NANOSPHERES; MICROFLUIDICS; SPECTROSCOPY; IMMUNOASSAY; OLIGONUCLEOTIDES;
D O I
10.1021/jp112265e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silver-coated magnetic microspheres (Fe3O4/Ag core/shell) were fabricated for use as a surface-enhanced Raman scattering (SEES) substrate. The surface morphology of the microspheres was characterized via field emission scanning electron microscopy and field emission transmission electron microscopy. Energy-dispersive spectroscopy was also employed to analyze the elemental composition of the structures. Malachite green was used as a model analyte to evaluate the performance of the microspheres as a SEES-active substrate and validate the SEES effect. The prepared microspheres possessed both magnetic and SEES properties. In addition, a microfluidic device with solenoids was designed and fabricated for a facile trace analysis. The solenoid chip allowed us to control the alignment of the magnetic microspheres on the wall of the microfluidic channel. Target samples were introduced into the channel and adsorbed on the surface of trapped silver-coated magnetic microspheres. SEES signals were then measured using a confocal Raman microscope. It is believed that a SEES-based optofluidic sensor with silver-coated magnetic microspheres can be successfully applied to microenvironmental analysis and other highly sensitive bioanalyses.
引用
收藏
页码:6290 / 6296
页数:7
相关论文
共 39 条
[1]   Electrochemical SERS at a structured gold surface [J].
Abdelsalam, ME ;
Bartlett, PN ;
Baumberg, JJ ;
Cintra, S ;
Kelf, TA ;
Russell, AE .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :740-744
[2]   Synthesis of Magnetic Fe2O3/Au Core/Shell Nanoparticles for Bioseparation and Immunoassay Based on Surface-Enhanced Raman Spectroscopy [J].
Bao, Fang ;
Yao, Jian-Lin ;
Gu, Ren-Ao .
LANGMUIR, 2009, 25 (18) :10782-10787
[3]   Electromagnetic interactions in plasmonic nanoparticle arrays [J].
Bouhelier, A ;
Bachelot, R ;
Im, JS ;
Wiederrecht, GP ;
Lerondel, G ;
Kostcheev, S ;
Royer, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (08) :3195-3198
[4]   Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores [J].
Chan, S ;
Kwon, S ;
Koo, TW ;
Lee, LP ;
Berlin, AA .
ADVANCED MATERIALS, 2003, 15 (19) :1595-+
[5]   Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips [J].
Chen, Lingxin ;
Choo, Jaebum .
ELECTROPHORESIS, 2008, 29 (09) :1815-1828
[6]   On-Chip Immunoassay Using Surface-Enhanced Raman Scattering of Hollow Gold Nanospheres [J].
Chon, Hyangah ;
Lim, Chaesung ;
Ha, Seung-Mo ;
Ahn, Yoomin ;
Lee, Eun Kyu ;
Chang, Soo-Ik ;
Seong, Gi Hun ;
Choo, Jaebum .
ANALYTICAL CHEMISTRY, 2010, 82 (12) :5290-5295
[7]   Highly Sensitive Immunoassay of Lung Cancer Marker Carcinoembryonic Antigen Using Surface-Enhanced Raman Scattering of Hallow Gold Nanospheres [J].
Chon, Hyangah ;
Lee, Sangyeop ;
Son, Sang Wook ;
Oh, Chil Hwan ;
Choo, Jaebum .
ANALYTICAL CHEMISTRY, 2009, 81 (08) :3029-3034
[8]   Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss [J].
Dick, LA ;
McFarland, AD ;
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (04) :853-860
[9]   The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip [J].
Docherty, FT ;
Monaghan, PB ;
Keir, R ;
Graham, D ;
Smith, WE ;
Cooper, JM .
CHEMICAL COMMUNICATIONS, 2004, (01) :118-119
[10]   Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering [J].
Doering, WE ;
Nie, SM .
ANALYTICAL CHEMISTRY, 2003, 75 (22) :6171-6176