Synthesis of Magnetic Fe2O3/Au Core/Shell Nanoparticles for Bioseparation and Immunoassay Based on Surface-Enhanced Raman Spectroscopy

被引:149
作者
Bao, Fang [1 ]
Yao, Jian-Lin [1 ]
Gu, Ren-Ao [1 ]
机构
[1] Soochow Univ, Dept Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
关键词
PROTEIN SEPARATION; PLASMON RESONANCE; FE OXIDE; LABELS; SCATTERING; PARTICLES; AU; ELECTRODES; ANTIBODIES; COLLOIDS;
D O I
10.1021/la901337r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetic Fe2O3/Au core/shell nanoparticles can be particularly used in biological separation, but the development of an appropriate technique including a production process for higher efficient separation and the subsequent immunoassay for lower level still represent a great challenge. In this article, Fe2O3/Au core/shell nanoparticles with different Au ratios were prepared by reducing HAuCl4 on the surface of gamma-Fe2O3 nanoparticles, Scanning electron microscopy (SEM) images and surface-enhanced Raman spectroscopy (SERS) spectra clearly show that the surfaces of Fe2O3 nanoparticles were covered by Au. SERS signals of pyridine (Py) have been obtained on the Fe2O3/Au nanoparticles, and it has been found that the SERS intensity enhanced with the increase of iterative additions of HAuCl4. The antigens in test solution have been effectively separated by the magnetic Fe2O3/Au core/shell nanoparticles, and subsequent rapid detection was examined by immunoassay analysis based on SERS. The result demonstrates that the magnetic bioseparation program used by this magnetic Fe2O3/Au core/shell nanoparticles could separate almost all of the antigens in test solution. The case of operation and good separation efficiency of this effective method has shown a potential application for magnetic Fe2O3/Au core/shell nanoparticles in bioseparation.
引用
收藏
页码:10782 / 10787
页数:6
相关论文
共 32 条
[1]   Bifunctional Au-Fe3O4 nanopartides for protein separation [J].
Bao, Jie ;
Chen, Wei ;
Liu, Taotao ;
Zhu, Yulin ;
Jin, Peiyuan ;
Wang, Leyu ;
Liu, Junfeng ;
Wei, Yongge ;
Li, Yadong .
ACS NANO, 2007, 1 (04) :293-298
[2]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[3]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[4]   Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy [J].
Cui, Y ;
Ren, B ;
Yao, JL ;
Gu, RA ;
Tian, ZQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (09) :4002-4006
[5]   The synthesis of GoldMag nano-particles and their application for antibody immobilization [J].
Cui, YL ;
Wang, YN ;
Hui, WL ;
Zhang, ZF ;
Xin, XF ;
Chen, C .
BIOMEDICAL MICRODEVICES, 2005, 7 (02) :153-156
[6]   Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications [J].
Desai, TA ;
Hansford, D ;
Ferrari, M .
JOURNAL OF MEMBRANE SCIENCE, 1999, 159 (1-2) :221-231
[7]   SEPARATION-FREE SANDWICH ENZYME IMMUNOASSAYS USING MICROPOROUS GOLD ELECTRODES AND SELF-ASSEMBLED MONOLAYER IMMOBILIZED CAPTURE ANTIBODIES [J].
DUAN, CM ;
MEYERHOFF, ME .
ANALYTICAL CHEMISTRY, 1994, 66 (09) :1369-1377
[8]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22
[9]  
GOSLING JP, 1990, CLIN CHEM, V36, P1408
[10]   Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced Raman scattering and immunogold labels [J].
Grubisha, DS ;
Lipert, RJ ;
Park, HY ;
Driskell, J ;
Porter, MD .
ANALYTICAL CHEMISTRY, 2003, 75 (21) :5936-5943