Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle

被引:32
作者
Miranda, Lisa [1 ]
Horman, Sandrine [1 ]
De Potter, Isabelle [1 ]
Hue, Louis [1 ]
Jensen, Jorgen [2 ]
Rider, Mark H. [1 ]
机构
[1] Univ Catholique Louvain, Duve Inst, Hormone & Metab Res Unit, B-1200 Brussels, Belgium
[2] Natl Inst Occupat Hlth, Pb 8149 Dep, Oslo, Norway
来源
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY | 2008年 / 455卷 / 06期
关键词
PKB; eEF2K; eEF2; mTORC1; p70S6K; 4E-BP1; rpS6; PRAS40;
D O I
10.1007/s00424-007-0368-2
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
In rat epitrochlearis skeletal muscle, contraction inhibited the basal and insulin-stimulated rates of protein synthesis by 75 and 70%, respectively, while increasing adenosine monophosphate-activated protein kinase (AMPK) activity. Insulin, on the other hand, stimulated protein synthesis (by 30%) and increased p70 ribosomal protein S6 kinase (p70S6K) Thr389, 40S ribosomal protein S6 (rpS6) Ser235/236, rpS6 Ser240/244 and eukaryotic initiation factor-4E-binding protein-1 (4E-BP1) Thr37/46 phosphorylation over basal values. Electrical stimulation had no effect on mammalian target of rapamycin complex 1 (mTORC1) signalling, as reflected by the lack of reduction in basal levels of p70S6K, rpS6 Ser235/236, rpS6 Ser240/244 and 4E-BP1 phosphorylation, but did antagonize mTORC1 signalling after stimulation of the pathway by insulin. Eukaryotic elongation factor-2 (eEF2) Thr56 phosphorylation increased rapidly on electrical stimulation reaching a maximum at 1 min, whereas AMPK Thr172 phosphorylation slowly increased to reach threefold after 30 min. Eukaryotic elongation factor-2 kinase (eEF2K) was not activated after 30 min of contraction when AMPK was activated. This could not be explained by the expression of a tissue-specific isoform of eEF2K in skeletal muscle lacking the Ser398 AMPK phosphorylation site. Therefore, in this skeletal muscle system, the contraction-induced inhibition of protein synthesis could not be attributed to a reduction in mTORC1 signalling but could be due to an increase in eEF2 phosphorylation independent of AMPK activation.
引用
收藏
页码:1129 / 1140
页数:12
相关论文
共 48 条
[1]   Effects of epinephrine on glucose metabolism in contracting rat skeletal muscles [J].
Aslesen, R ;
Jensen, J .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1998, 275 (03) :E448-E456
[2]   Selective activation of AMPK-PGC-1α or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation [J].
Atherton, PJ ;
Babraj, JA ;
Smith, K ;
Singh, J ;
Rennie, MJ ;
Wackerhage, H .
FASEB JOURNAL, 2005, 19 (02) :786-+
[3]   PHYSIOLOGICAL HYPERINSULINEMIA STIMULATES PROTEIN-SYNTHESIS AND ENHANCES TRANSPORT OF SELECTED AMINO-ACIDS IN HUMAN SKELETAL-MUSCLE [J].
BIOLO, G ;
FLEMING, RYD ;
WOLFE, RR .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 95 (02) :811-819
[4]   AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. [J].
Bolster, DR ;
Crozier, SJ ;
Kimball, SR ;
Jefferson, LS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :23977-23980
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, Serine 398 [J].
Browne, GJ ;
Finn, SG ;
Proud, CG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) :12220-12231
[7]   A HIERARCHY OF ATP-CONSUMING PROCESSES IN MAMMALIAN-CELLS [J].
BUTTGEREIT, F ;
BRAND, MD .
BIOCHEMICAL JOURNAL, 1995, 312 :163-167
[8]   PROTEIN-SYNTHESIS VERSUS ENERGY-STATE IN CONTRACTING MUSCLES OF PERFUSED RAT HINDLIMB [J].
BYLUNDFELLENIUS, AC ;
OJAMAA, KM ;
FLAIM, KE ;
LI, JB ;
WASSNER, SJ ;
JEFFERSON, LS .
AMERICAN JOURNAL OF PHYSIOLOGY, 1984, 246 (04) :E297-E305
[9]   EFFECT OF EXERCISE AND RECOVERY ON MUSCLE PROTEIN-SYNTHESIS IN HUMAN-SUBJECTS [J].
CARRARO, F ;
STUART, CA ;
HARTL, WH ;
ROSENBLATT, J ;
WOLFE, RR .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 259 (04) :E470-E476
[10]   Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status [J].
Cheng, SWY ;
Fryer, LGD ;
Carling, D ;
Shepherd, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (16) :15719-15722