Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1

被引:69
作者
Ehrbar, K
Friebel, A
Miller, SI
Hardt, WD
机构
[1] ETH, Inst Microbiol, CH-8092 Zurich, Switzerland
[2] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
[3] Univ Washington, Dept Med, Seattle, WA 98195 USA
关键词
D O I
10.1128/JB.185.23.6950-6967.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.
引用
收藏
页码:6950 / 6967
页数:18
相关论文
共 78 条
[1]   A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica [J].
Anderson, DM ;
Schneewind, O .
SCIENCE, 1997, 278 (5340) :1140-1143
[2]   Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells [J].
Bakshi, CS ;
Singh, VP ;
Wood, MW ;
Jones, PW ;
Wallis, TS ;
Galyov, EE .
JOURNAL OF BACTERIOLOGY, 2000, 182 (08) :2341-2344
[3]   From flagellum assembly to virulence: the extended family of type III export chaperones [J].
Bennett, JCQ ;
Hughes, C .
TRENDS IN MICROBIOLOGY, 2000, 8 (05) :202-204
[4]   Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens [J].
Birtalan, SC ;
Phillips, RM ;
Ghosh, P .
MOLECULAR CELL, 2002, 9 (05) :971-980
[5]   InvB is a type III secretion chaperone specific for SspA [J].
Bronstein, PA ;
Miao, EA ;
Miller, SI .
JOURNAL OF BACTERIOLOGY, 2000, 182 (23) :6638-6644
[6]   Type III machines of Gram-negative bacteria: delivering the goods [J].
Cheng, LW ;
Schneewind, O .
TRENDS IN MICROBIOLOGY, 2000, 8 (05) :214-220
[7]   Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica [J].
Cheng, LW ;
Anderson, DM ;
Schneewind, O .
MOLECULAR MICROBIOLOGY, 1997, 24 (04) :757-765
[8]   Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium [J].
Collazo, CM ;
Galan, JE .
INFECTION AND IMMUNITY, 1996, 64 (09) :3524-3531
[9]   Assembly and function of type III secretory systems [J].
Cornelis, GR ;
Van Gijsegem, F .
ANNUAL REVIEW OF MICROBIOLOGY, 2000, 54 :735-774
[10]   The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion [J].
Dale, C ;
Young, SA ;
Haydon, DT ;
Welburn, SC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (04) :1883-1888