Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana

被引:405
作者
Li, Y [1 ]
Baldauf, S [1 ]
Lim, EK [1 ]
Bowles, DJ [1 ]
机构
[1] Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England
关键词
D O I
10.1074/jbc.M007447200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A class of UDP-glycosyltransferases (UGTs) defined by the presence of a C-terminal consensus sequence is found throughout the plant and animal kingdoms. Whereas mammalian enzymes use UDP-glucuronic acid, the plant enzymes typically use UDP-glucose in the transfer reactions. A diverse array of aglycones can be glucosylated by these UGTs. In plants, the aglycones include plant hormones, secondary metabolites involved in stress and defense responses, and xenobiotics such as herbicides. Glycosylation is known to regulate many properties of the aglycones such as their bioactivity, their solubility, and their transport properties within the cell and throughout the plant. As a means of providing a framework to start to understand the substrate specificities and structure-function relationships of plant UGTs, we have now applied a molecular phylogenetic analysis to the multigene family of 99 UGT sequences in Arabidopsis. We have determined the overall organization and evolutionary relationships among individual members with a surprisingly high degree of confidence. Through constructing a composite phylogenetic tree that also includes all of the additional plant UGTs with known catalytic activities, we can start to predict both the evolutionary history and substrate specificities of new sequences as they are identified. The tree already suggests that while the activities of some subgroups of the UGT family are highly conserved among different plant species, others subgroups shift substrate specificity with relative ease.
引用
收藏
页码:4338 / 4343
页数:6
相关论文
共 49 条
[1]   The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates [J].
Bak, S ;
Nielsen, HL ;
Halkier, BA .
PLANT MOLECULAR BIOLOGY, 1998, 38 (05) :725-734
[2]   ANIMALS AND FUNGI ARE EACH OTHERS CLOSEST RELATIVES - CONGRUENT EVIDENCE FROM MULTIPLE PROTEINS [J].
BALDAUF, SL ;
PALMER, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11558-11562
[3]   ISOLATION AND CHARACTERIZATION OF A CDNA CLONE CORRESPONDING TO THE RT LOCUS OF PETUNIA-HYBRIDA [J].
BRUGLIERA, F ;
HOLTON, TA ;
STEVENSON, TW ;
FARCY, E ;
LU, CY ;
CORNISH, EC .
PLANT JOURNAL, 1994, 5 (01) :81-92
[4]   A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities [J].
Campbell, JA ;
Davies, GJ ;
Bulone, V ;
Henrissat, B .
BIOCHEMICAL JOURNAL, 1997, 326 :929-939
[5]  
CAVALIERSMITH T, 1991, TRENDS GENET, V7, P145, DOI 10.1016/0168-9525(91)90377-3
[6]   Glucuronidation in humans - Pharmacogenetic and developmental aspects [J].
de Wildt, SN ;
Kearns, GL ;
Leeder, JS ;
van den Anker, JN .
CLINICAL PHARMACOKINETICS, 1999, 36 (06) :439-452
[7]   Plant glutathione S-transferases:: enzymes with multiple functions in sickness and in health [J].
Edwards, R ;
Dixon, DP ;
Walbot, V .
TRENDS IN PLANT SCIENCE, 2000, 5 (05) :193-198
[8]  
FEDOROFF NV, 1984, P NATL ACAD SCI USA, V81, P3829
[9]   Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo [J].
Ford, CM ;
Boss, PK ;
Hoj, PB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (15) :9224-9233
[10]   Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid [J].
Fraissinet-Tachet, L ;
Baltz, R ;
Chong, J ;
Kauffmann, S ;
Fritig, B ;
Saindrenan, P .
FEBS LETTERS, 1998, 437 (03) :319-323