The effect of C60 on the ZnO-nanorod surface in organic-inorganic hybrid photovoltaics

被引:46
作者
Chen, Chiang-Ting [2 ]
Hsu, Fang-Chi [1 ]
Kuan, Shang-Wei [1 ]
Chen, Yang-Fang [2 ]
机构
[1] Natl United Univ, Dept Mat Sci & Engn, Miaoli 360, Taiwan
[2] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan
关键词
Hybrid solar cell; C60; Surface modification; ZnO-nanorod; POLYMER SOLAR-CELLS; DEVICES;
D O I
10.1016/j.solmat.2010.10.015
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The electrical property of the organic-inorganic heterojunctions is one of the important factors affecting the performance of hybrid photovoltaic devices. We introduce a good electron conductor. C-60, to modify the surface of ZnO-nanorod arrays in a ZnO-nanorod/poly(3-hexylthiophene):(6,6)-phenyl C-61 butyric acid methyl ester (ZnO/P3HT:PCBM) hybrid photovoltaic structure. We found that there is similar to 40% and similar to 15% increment in the short circuit current (J(SC)) and open circuit voltage (V-OC), respectively, for the device after C-60, modification. By probing the carrier dynamics and the surface property of ZnO-nanorods, the presence of the C-60 layer assists the exciton separation and passivates part of the defect states on the ZnO-nanorod surface. The charge transport property at the ZnO/polymer blend interface is, therefore, improved. As a result, higher charge concentration can transfer from the polymer blend to the ZnO-nanorods more effectively and subsequently travel to electrodes leading to the improved performance in the photovoltaic device. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:740 / 744
页数:5
相关论文
共 27 条
[1]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[2]   Electronic excitations in luminescent conjugated polymers [J].
Friend, RH ;
Denton, GJ ;
Halls, JJM ;
Harrison, NT ;
Holmes, AB ;
Kohler, A ;
Lux, A ;
Moratti, SC ;
Pichler, K ;
Tessler, N ;
Towns, K ;
Wittmann, HF .
SOLID STATE COMMUNICATIONS, 1997, 102 (2-3) :249-258
[3]   Solar cell efficiency tables (version 31) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (01) :61-67
[4]   Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer [J].
Hau, Steven K. ;
Yip, Hin-Lap ;
Baek, Nam Seob ;
Zou, Jingyu ;
O'Malley, Kevin ;
Jen, Alex K. -Y. .
APPLIED PHYSICS LETTERS, 2008, 92 (25)
[5]   Enhancing performance of organic-inorganic hybrid solar cells using a fullerene interlayer from all-solution processing [J].
Huang, Jing-Shun ;
Chou, Chen-Yu ;
Lin, Ching-Fuh .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (02) :182-186
[6]   Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods [J].
Huang, Jing-Shun ;
Chou, Chen-Yu ;
Liu, Meng-Yueh ;
Tsai, Kao-Hua ;
Lin, Wen-Han ;
Lin, Ching-Fuh .
ORGANIC ELECTRONICS, 2009, 10 (06) :1060-1065
[7]   Hybrid nanorod-polymer solar cells [J].
Huynh, WU ;
Dittmer, JJ ;
Alivisatos, AP .
SCIENCE, 2002, 295 (5564) :2425-2427
[8]   Upscaling of polymer solar cell fabrication using full roll-to-roll processing [J].
Krebs, Frederik C. ;
Tromholt, Thomas ;
Jorgensen, Mikkel .
NANOSCALE, 2010, 2 (06) :873-886
[9]   Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africa'' initiative [J].
Krebs, Frederik C. ;
Nielsen, Torben D. ;
Fyenbo, Jan ;
Wadstrom, Mads ;
Pedersen, Marie S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (05) :512-525
[10]   A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies [J].
Krebs, Frederik C. ;
Gevorgyan, Suren A. ;
Alstrup, Jan .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (30) :5442-5451