Robust Finite-Time Stabilization of Fractional-Order Extended Nonholonomic Chained Form Systems

被引:11
作者
Chen, Hua [1 ,2 ]
Yan, Da [3 ]
Chen, Xi [4 ]
Lei, Yan [5 ]
Wang, Yawei [5 ]
机构
[1] Hohai Univ, Dept Math & Phys, Changzhou Campus, Changzhou 213022, Peoples R China
[2] Changzhou Key Lab Special Robot & Intelligent Tec, Changzhou 213022, Peoples R China
[3] Hohai Univ, Coll Mech & Elect Engn, Changzhou 213022, Peoples R China
[4] Changzhou Inst Light Ind Technol, Dept Math, Changzhou 213164, Peoples R China
[5] Hohai Univ, Coll Internet Things Engn, Changzhou 213022, Peoples R China
来源
PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT SYSTEMS CONFERENCE, VOL 2 | 2016年 / 360卷
关键词
Nonholonomic control systems; Fractional-order; Extended chained-form systems; Finite-time stabilization; MOBILE ROBOT; EXPONENTIAL STABILIZATION; TRACKING CONTROL; VARYING CONTROL; FEEDBACK; CONTROLLERS;
D O I
10.1007/978-3-662-48365-7_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We discuss the robust, finite-time stabilization of fractional-order extended nonholonomic chained form systems for the first time in this article. By applying sliding mode variable structure theory and stability theorem of finite-time control, the three-step switching control scheme is proposed to deal with the presence of system uncertainties and external disturbance, so that the closed-loop system is finite time stable at the origin equilibrium point within any given settling time. Finally, simulation results show the effectiveness of the presented controller.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 43 条
[1]   Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems based on Fractional Lyapunov Stability Theory [J].
Aghababa, Mohammad Pourmahmood .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (02)
[2]  
[Anonymous], CRIT REV BIOENG
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   Discontinuous control of nonholonomic systems [J].
Astolfi, A .
SYSTEMS & CONTROL LETTERS, 1996, 27 (01) :37-45
[5]  
Baleanu D, 2010, CENT EUR J PHYS, V8, P120, DOI [10.2478/s11534-009-0085-x, 10.2478/S11534-009-0085-X]
[6]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[7]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[8]  
Brockett RW., 1983, DIFFERENTIAL GEOMETR, V27, P181
[9]  
Chen H, 2012, J DYN SYST MEAS CONT, V134
[10]   Global Practical Stabilization for Non-holonomic Mobile Robots with Uncalibrated Visual Parameters by Using a Switching Controller [J].
Chen, Hua ;
Zhang, Jinbo ;
Chen, Bingyan ;
Li, Baojun .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2013, 30 (04) :543-557