Cooperative action of antioxidant defense systems in Drosophila

被引:86
作者
Missirlis, F [1 ]
Phillips, JP
Jäckle, H
机构
[1] Max Planck Inst Biophys Chem, Abt Mol Entwicklungsbiol, D-37070 Gottingen, Germany
[2] Univ Guelph, Dept Mol Biol & Genet, Guelph, ON N1G 2W1, Canada
关键词
D O I
10.1016/S0960-9822(01)00393-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular oxygen is key to aerobic life but is also converted into cytotoxic byproducts referred to as reactive oxygen species (ROS) [1]. Intracellular defense systems that protect cells from ROS-induced damage include glutathione reductase (GR), thioredoxin reductase (TrxR), superoxide dismutase (Sod), and catalase (Cat) [2]. Sod and Cat constitute an evolutionary conserved ROS defense system against superoxide; Sod converts superoxide anions to H2O2, and Cat prevents free hydroxyl radical formation by breaking down H2O2 into oxygen and water [2]. As a consequence, they are important effectors in the life span determination of the fly Drosophila [3-7]. ROS defense by TrxR and GR is more indirect. They transfer reducing equivalents from NADPH to thioredoxin (Trx) and glutathione disulfide (GSSG), respectively, resulting in Trx(SH)2 and glutathione (GSH), which act as effective intracellular antioxidants [2, 8]. TrxR and GR were found to be molecularly conserved [9]. However, the single GR homolog of Drosophila [10, 11] specifies TrxR activity [12], which compensates for the absence of a true GR system for recycling GSH [12]. We show that TrxR null mutations reduce the capacity to adequately protect cells from cytotoxic damage, resulting in larval death, whereas mutations causing reduced TrxR activity affect pupal eclosion and cause a severe reduction of the adult life span. We also provide genetic evidence for a functional interaction between TrxR, Sod1, and Cat, indicating that the burden of ROS metabolism in Drosophila is shared by the two defense systems.
引用
收藏
页码:1272 / 1277
页数:6
相关论文
共 35 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]   SEARCHING FOR PATTERN AND MUTATION IN THE DROSOPHILA GENOME WITH A P-LACZ VECTOR [J].
BIER, E ;
VAESSIN, H ;
SHEPHERD, S ;
LEE, K ;
MCCALL, K ;
BARBEL, S ;
ACKERMAN, L ;
CARRETTO, R ;
UEMURA, T ;
GRELL, E ;
JAN, LY ;
JAN, YN .
GENES & DEVELOPMENT, 1989, 3 (09) :1273-1287
[3]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[4]  
Campos-Ortega J. A., 1997, The Embryonic Development of Drosophila melanogaster, Vsecond
[5]   Molecular organization of the glutathione reductase gene in Drosophila melanogaster [J].
Candas, M ;
Sohal, RS ;
Radyuk, SN ;
Klichko, VI ;
Orr, WC .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1997, 339 (02) :323-334
[6]   Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress [J].
Carmel-Harel, O ;
Storz, G .
ANNUAL REVIEW OF MICROBIOLOGY, 2000, 54 :439-461
[7]   Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae [J].
Carmel-Harel, O ;
Stearman, R ;
Gasch, AP ;
Botstein, D ;
Brown, PO ;
Storz, G .
MOLECULAR MICROBIOLOGY, 2001, 39 (03) :595-605
[8]   INSERTIONAL MUTAGENESIS OF THE DROSOPHILA GENOME WITH SINGLE P-ELEMENTS [J].
COOLEY, L ;
KELLEY, R ;
SPRADLING, A .
SCIENCE, 1988, 239 (4844) :1121-1128
[9]   Structure and regulated expression of the δ-aminolevulinate synthase gene from Drosophila melanogaster [J].
de Mena, IR ;
Fernández-Moreno, MA ;
Bornstein, B ;
Kaguni, LS ;
Garesse, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (52) :37321-37328
[10]   Genetic feminization of pheromones and its behavioral consequences in Drosophila males [J].
Ferveur, JF ;
Savarit, F ;
OKane, CJ ;
Sureau, G ;
Greenspan, RJ ;
Jallon, JM .
SCIENCE, 1997, 276 (5318) :1555-1558