Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics

被引:1755
作者
Kim, Sang Il [1 ]
Lee, Kyu Hyoung [2 ]
Mun, Hyeon A. [3 ,4 ]
Kim, Hyun Sik [1 ,5 ]
Hwang, Sung Woo [1 ]
Roh, Jong Wook [1 ]
Yang, Dae Jin [1 ]
Shin, Weon Ho [1 ]
Li, Xiang Shu [1 ]
Lee, Young Hee [3 ,4 ]
Snyder, G. Jeffrey [3 ,5 ]
Kim, Sung Wng [3 ,4 ]
机构
[1] Samsung Elect, Samsung Adv Inst Technol, Mat Res Ctr, Suwon 443803, South Korea
[2] Kangwon Natl Univ, Dept Nano Appl Engn, Chunchon 200701, South Korea
[3] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea
[4] Sungkyunkwan Univ, Inst Basic Sci, IBS Ctr Integrated Nanostruct Phys, Suwon 440746, South Korea
[5] CALTECH, Mat Sci, Pasadena, CA 91125 USA
基金
新加坡国家研究基金会;
关键词
LATTICE THERMAL-CONDUCTIVITY; BI2TE3; POWER;
D O I
10.1126/science.aaa4166
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The widespread use of thermoelectric technology is constrained by a relatively low conversion efficiency of the bulk alloys, which is evaluated in terms of a dimensionless figure of merit (zT). The zT of bulk alloys can be improved by reducing lattice thermal conductivity through grain boundary and point-defect scattering, which target low-and high-frequency phonons. Dense dislocation arrays formed at low-energy grain boundaries by liquid-phase compaction in Bi0.5Sb1.5Te3 (bismuth antimony telluride) effectively scatter midfrequency phonons, leading to a substantially lower lattice thermal conductivity. Full-spectrum phonon scattering with minimal charge-carrier scattering dramatically improved the zT to 1.86 +/- 0.15 at 320 kelvin (K). Further, a thermoelectric cooler confirmed the performance with a maximum temperature difference of 81 K, which is much higher than current commercial Peltier cooling devices.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 33 条
[1]   LATTICE THERMAL CONDUCTIVITY OF DISORDERED SEMICONDUCTOR ALLOYS AT HIGH TEMPERATURES [J].
ABELES, B .
PHYSICAL REVIEW, 1963, 131 (05) :1906-&
[2]  
[Anonymous], 2009, Transmission Electron Microscopy: A Textbook for Materials Science
[3]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[4]  
Buist R. J., 1980, 3 INT C THERM EN CON, P130
[5]   Coupling grain boundary motion to shear deformation [J].
Cahn, John W. ;
Mishin, Yuri ;
Suzuki, Akira .
ACTA MATERIALIA, 2006, 54 (19) :4953-4975
[6]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[7]   Thermal barrier coating materials [J].
Clarke, David R. ;
Phillpot, Simon R. .
MATERIALS TODAY, 2005, 8 (06) :22-29
[8]   INVESTIGATIONS OF DISLOCATION STRAIN FIELDS USING WEAK BEAMS [J].
COCKAYNE, DJ ;
RAY, ILF ;
WHELAN, MJ .
PHILOSOPHICAL MAGAZINE, 1969, 20 (168) :1265-&
[9]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[10]   p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit [J].
Fan, Shufen ;
Zhao, Junnan ;
Guo, Jun ;
Yan, Qingyu ;
Ma, Jan ;
Hng, Huey Hoon .
APPLIED PHYSICS LETTERS, 2010, 96 (18)