Influence of copper crystal surface on the CVD growth of large area monolayer graphene

被引:191
作者
Zhao, L. [1 ]
Rim, K. T. [2 ]
Zhou, H. [1 ]
He, R. [1 ]
Heinz, T. F. [1 ,2 ]
Pinczuk, A. [1 ,3 ]
Flynn, G. W. [4 ]
Pasupathy, A. N. [1 ]
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[4] Columbia Univ, Dept Chem, New York, NY 10027 USA
关键词
STM; Graphene; EPITAXIAL GRAPHENE;
D O I
10.1016/j.ssc.2011.01.014
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the influence of the surface structure of copper single crystals on the growth of large area monolayer graphene by chemical vapor deposition (CVD) in ultra-high vacuum (UHV). Using atomic-resolution scanning tunneling microscopy (STM), we find that graphene grows primarily in registry with the underlying copper lattice for both Cu(111) and Cu(100). The graphene has a hexagonal superstructure on Cu(111) with a significant electronic component,whereas it has a linear superstructure on Cu(100). Graphene on Cu(111) forms a microscopically uniform sheet, the quality of which is determined by the presence of grain boundaries where graphene grains with different orientations meet. Graphene grown on Cu(100) under similar conditions does not form a uniform sheet and instead displays exposed nanoscale edges. Our results indicate the importance of the copper crystal structure on the microstructure of graphene films produced by CVD. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:509 / 513
页数:5
相关论文
共 24 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]  
Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
[3]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[4]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[5]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[6]   Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growth on Stepped Metal Surfaces [J].
Chen, Hua ;
Zhu, Wenguang ;
Zhang, Zhenyu .
PHYSICAL REVIEW LETTERS, 2010, 104 (18)
[7]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[8]   IMAGING STANDING WAVES IN A 2-DIMENSIONAL ELECTRON-GAS [J].
CROMMIE, MF ;
LUTZ, CP ;
EIGLER, DM .
NATURE, 1993, 363 (6429) :524-527
[9]   Structure and Electronic Properties of Graphene Nanoislands on Co(0001) [J].
Eom, Daejin ;
Prezzi, Deborah ;
Rim, Kwang Taeg ;
Zhou, Hui ;
Lefenfeld, Michael ;
Xiao, Shengxiong ;
Nuckolls, Colin ;
Hybertsen, Mark S. ;
Heinz, Tony F. ;
Flynn, George W. .
NANO LETTERS, 2009, 9 (08) :2844-2848
[10]   Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces [J].
Ismach, Ariel ;
Druzgalski, Clara ;
Penwell, Samuel ;
Schwartzberg, Adam ;
Zheng, Maxwell ;
Javey, Ali ;
Bokor, Jeffrey ;
Zhang, Yuegang .
NANO LETTERS, 2010, 10 (05) :1542-1548