Dynamical instabilities of the Randall-Sundrum model

被引:11
作者
Boehm, T
Durrer, R
van de Bruck, C
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
关键词
D O I
10.1103/PhysRevD.64.063504
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive dynamical equations to describe a single 3-brane containing fluid matter and a scalar field coupling to the dilaton and the gravitational field in a five-dimensional bulk. First. we show that a scalar field or an arbitrary fluid on the brane cannot evolve to cancel the cosmological constant in the bulk. Then we show that the Randall-Sundrum model is unstable under small deviations from the fine-tuning between the brane tension and the bulk cosmological constant and even under homogeneous gravitational perturbations. Implications for brane world cosmologies are discussed.
引用
收藏
页数:9
相关论文
共 29 条
[21]   Collider signatures of new large space dimensions [J].
Mirabelli, EA ;
Perelstein, M ;
Peskin, ME .
PHYSICAL REVIEW LETTERS, 1999, 82 (11) :2236-2239
[22]   Vanishing of the cosmological constant in nonfactorizable geometry [J].
Padmanabhan, T ;
Shankaranarayanan, S .
PHYSICAL REVIEW D, 2001, 63 (10)
[23]  
POLCHINSKI J, 1999, STRING THEORY 1PLUS2
[24]   Large mass hierarchy from a small extra dimension [J].
Randall, L ;
Sundrum, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (17) :3370-3373
[25]   Electroweak precision measurements and collider probes of the standard model with large extra dimensions [J].
Rizzo, TG ;
Wells, JD .
PHYSICAL REVIEW D, 2000, 61 (01)
[26]   The Einstein equations on the 3-brane world [J].
Shiromizu, T ;
Maeda, K ;
Sasaki, M .
PHYSICAL REVIEW D, 2000, 62 (02) :6
[27]   PERTURBATIONS OF SPACE-TIMES IN GENERAL RELATIVITY [J].
STEWART, JM ;
WALKER, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 341 (1624) :49-74
[28]   ELEMENTS OF STRING COSMOLOGY [J].
TSEYTLIN, AA ;
VAFA, C .
NUCLEAR PHYSICS B, 1992, 372 (1-2) :443-466
[29]   THE COSMOLOGICAL CONSTANT PROBLEM [J].
WEINBERG, S .
REVIEWS OF MODERN PHYSICS, 1989, 61 (01) :1-22