Engineering custom-designed osteochondral tissue grafts

被引:93
作者
Grayson, Warren L. [1 ]
Chao, Pen-Hsiu Grace [1 ]
Marolt, Darja [1 ]
Kaplan, David L. [2 ]
Vunjak-Novakovic, Gordana [1 ]
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
关键词
D O I
10.1016/j.tibtech.2007.12.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Tissue engineering is expected to help us outlive the failure of our organs by enabling the creation of tissue substitutes capable of fully restoring the original tissue function. Degenerative joint disease, which affects one-fifth of the US population and is the country's leading cause of disability, drives current research of actively growing, functional tissue grafts for joint repair. Toward this goal, living cells are used in conjunction with biomaterial scaffolds (serving as instructive templates for tissue development) and bioreactors; (providing environmental control and molecular and physical regulatory signals). In this review, we discuss the requirements for engineering customized, anatomically-shaped, stratified grafts for joint repair and the challenges of designing these grafts to provide immediate functionality (load bearing, structural support) and long-term regeneration (maturation, integration, remodeling).
引用
收藏
页码:181 / 189
页数:9
相关论文
共 70 条
[1]  
Ahmed Nazish, 2007, Cell Physiol Biochem, V20, P665, DOI 10.1159/000107728
[2]   Tissue-engineered osteochondral constructs in the shape of an articular condyle [J].
Alhadlaq, A ;
Mao, JJ .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2005, 87A (05) :936-944
[3]   Adult stem cell driven genesis of human-shaped articular condyle [J].
Alhadlaq, A ;
Elisseeff, JH ;
Hong, L ;
Williams, CG ;
Caplan, AI ;
Sharma, B ;
Kopher, RA ;
Tomkoria, S ;
Lennon, DP ;
Lopez, A ;
Mao, JJ .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (07) :911-923
[4]   Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells [J].
Alhadlaq, A ;
Mao, JJ .
JOURNAL OF DENTAL RESEARCH, 2003, 82 (12) :951-956
[5]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[6]   Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds [J].
Awad, HA ;
Wickham, MQ ;
Leddy, HA ;
Gimble, JM ;
Guilak, F .
BIOMATERIALS, 2004, 25 (16) :3211-3222
[7]   Review:: Ex vivo engineering of living tissues with adult stem cells [J].
Barrilleaux, Bonnie ;
Phinney, Donald G. ;
Prockop, Darwin J. ;
O'Connor, Kim C. .
TISSUE ENGINEERING, 2006, 12 (11) :3007-3019
[8]   DEDIFFERENTIATED CHONDROCYTES REEXPRESS THE DIFFERENTIATED COLLAGEN PHENOTYPE WHEN CULTURED IN AGAROSE GELS [J].
BENYA, PD ;
SHAFFER, JD .
CELL, 1982, 30 (01) :215-224
[9]   Bone marrow stromal stem cells: Nature, biology, and potential applications [J].
Bianco, P ;
Riminucci, M ;
Gronthos, S ;
Robey, PG .
STEM CELLS, 2001, 19 (03) :180-192
[10]   Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro [J].
Binette, F ;
McQuaid, DP ;
Haudenschild, DR ;
Yaeger, PC ;
McPherson, JM ;
Tubo, R .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (02) :207-216