Nonlinear feedback synchronization control of Liu chaotic system

被引:23
作者
Chen, ZS [1 ]
Sun, KH [1 ]
Zhang, TS [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
关键词
Liu chaotic system; chaotic synchronization; nonlinear feedback control; parameter adaptive control;
D O I
10.7498/aps.54.2580
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Synchronization of a new chaotic system called Liu chaotic system is studied. Based on Lyapunov stabilization theorem and nonlinear feedback control method, the sufficient conditions and range of the controller' s parameter for self-synchronization of Liu chaotic systems are derived. By combining the parameter adaptive control method and the nonlinear feedback control method, the synchronization of Liu system at speed with unified chaotic systems is implemented. Simulation results validate the proposed synchronization methode.
引用
收藏
页码:2580 / 2583
页数:4
相关论文
共 14 条
[1]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[2]   Synchronization in chaotic systems based on resilient controller [J].
Guan, XP ;
He, YH ;
Wu, J .
ACTA PHYSICA SINICA, 2003, 52 (11) :2718-2722
[3]   Synchronization of two different systems by using generalized active control [J].
Ho, MC ;
Hung, YC .
PHYSICS LETTERS A, 2002, 301 (5-6) :424-428
[4]   Application of impulsive synchronization to communication security [J].
Khadra, A ;
Liu, XZ ;
Shen, XM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2003, 50 (03) :341-351
[5]   Chaos synchronization by using random parametric adaptive control method [J].
Li, GH ;
Xu, DM ;
Zhou, SP .
ACTA PHYSICA SINICA, 2004, 53 (02) :379-382
[6]   A new chaotic attractor [J].
Liu, CX ;
Liu, T ;
Liu, L ;
Liu, K .
CHAOS SOLITONS & FRACTALS, 2004, 22 (05) :1031-1038
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[9]   Dynamical analysis of a new chaotic attractor [J].
Lu, JH ;
Chen, GR ;
Zhang, SC .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (05) :1001-1015
[10]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926