Synchronization in chaotic systems based on resilient controller

被引:11
作者
Guan, XP [1 ]
He, YH
Wu, J
机构
[1] China Univ Min & Technol, Inst Commun & Elect Engn, Xuzhou 221008, Peoples R China
[2] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Peoples R China
关键词
chaotic system; synchronization; resilient control;
D O I
10.7498/aps.52.2718
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the linear output feedback method, we investigate the resilient synchronization for a class of chaotic systems. The influence of uncertainties in controller itself is weakened. By the LMI (linear matrix inequality) toolbox, the resilient controller is derived conveniently. Finally, the computer simulation results illustrate the validity of the method and the importance of the research.
引用
收藏
页码:2718 / 2722
页数:5
相关论文
共 15 条
[1]  
Chen SH, 2002, CHINESE PHYS, V11, P543, DOI 10.1088/1009-1963/11/6/305
[2]   CANONICAL REALIZATION OF CHUA CIRCUIT FAMILY [J].
CHUA, LO ;
LIN, GN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (07) :885-902
[3]   Robust non-fragile LQ controllers: the static state feedback case [J].
Famularo, D ;
Dorato, P ;
Abdallah, CT ;
Haddad, WM ;
Jadbabaie, A .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (02) :159-165
[4]   Synchronization of a class of chaotic systems in the presence of perturbation by an observer [J].
Guan, XP ;
He, YH ;
Fan, ZP .
ACTA PHYSICA SINICA, 2003, 52 (02) :276-280
[5]   Synchronization of uncertain time delay chaotic systems using the adaptive fuzzy method [J].
Guan, XP ;
Hua, CC .
CHINESE PHYSICS LETTERS, 2002, 19 (08) :1031-1034
[6]   The synchronization of chaotic systems based on RBF network in the presence of perturbation [J].
Guan, XP ;
Fan, ZP ;
Peng, HP ;
Wang, YQ .
ACTA PHYSICA SINICA, 2001, 50 (09) :1670-1674
[7]   Synchronization on using parametric adaptive control algorithm [J].
He, MF ;
Mu, YM ;
Zhao, LZ .
ACTA PHYSICA SINICA, 2000, 49 (05) :830-832
[8]   Robust, fragile, or optimal? [J].
Keel, LH ;
Bhattacharyya, SP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) :1098-1105
[9]  
Li Z, 2002, CHINESE PHYS, V11, P9, DOI 10.1088/1009-1963/11/1/303
[10]   A linear feedback synchronization theorem for a class of chaotic systems [J].
Liu, F ;
Ren, Y ;
Shan, XM ;
Qiu, ZL .
CHAOS SOLITONS & FRACTALS, 2002, 13 (04) :723-730