Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties

被引:141
作者
Alvarez-Lorenzo, C [1 ]
Concheiro, A
Dubovik, AS
Grinberg, NV
Burova, TV
Grinberg, VY
机构
[1] Univ Santiago de Compostela, Fac Farm, Dept Farm & Tecnol Farmaceut, Santiago De Compostela 15782, Spain
[2] Russian Acad Sci, NM Emanuel Inst Biochem Phys, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
PNIPA; chitosan; interpenetrated networks; high-sensitivity differential scanning calorimetry (HS-DSC); diclofenac; controlled drug release; energetics of phase transitions;
D O I
10.1016/j.jconrel.2004.10.021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interpenetrated polymer networks (IPN) of poly(N-isopropylacrylamide) (PNIPA) and chitosan (two grades) were prepared by free radical polymerisation and cross-linking of PNIPA (700 mM) with bis(acrylamide) (20 mM) in chitosan solutions (1.5 wt.% in acetic acid), and subsequent immersion in glutaraldehyde solutions (0 to 0.7 vol.%) to post-cross-link the chitosan. The amount of chitosan that remained in the IPNs, after washing, was proportional to the glutaraldehyde concentration used in the post-cross-linking step; being only 50% of the theoretical when the post-cross-linking was omitted (semi-IPN). The temperature-induced phase transitions of the IPNs were followed by the changes in the swelling degree and in the thermodynamic parameters (temperature, enthalpy, heat capacity, and width of the transition), which were evaluated using high-sensitivity differential scanning calorimetry (HS-DSC). An increase in the post-cross-linking degree of chitosan caused a decrease in the enthalpy of the transition, and in the absolute value of the transition heat capacity increment (Delta(t)C(p)), as well as a broadening of the heat capacity peak. This behaviour is a consequence of the subdivision, in the IPNs, of the PNIPA network in microdomains, some regions of which (surface or outer) cannot be involved in the transitions. On the other hand, changes in pH from 8 to 3 only increased the transition temperature from about 32 to 34degreesC, despite the considerable modification that this caused in the ionisation degree of chitosan. The PNIPA/chitosan IPNs had a notably greater affinity for diclofenac than the pure PNIPA hydrogel and were able to sustain the drug release for more than 8 h in 0.9% NaCl solutions or pH 8 phosphate buffer. The IPNs with lower chitosan post-cross-linking degree showed the higher temperature-sensitive release patterns. In contrast, the temperature did not significantly affect the release rate from the most cross-linked IPNs, in which the PNIPA microdomains are smaller and the volume phase transitions are less sharper. Therefore, PNIPA microdomains play an important role in controlling the release process. In summary, the interpenetration of networks with complementary properties, such as those made with PNIPA and chitosan, make it possible to develop drug delivery systems with improved drug loading capacity (owing to chitosan) and sustained release behaviour (owing to PNIPA). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:629 / 641
页数:13
相关论文
共 40 条
  • [1] Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel
    Alvarez-Lorenzo, C
    Concheiro, A
    [J]. JOURNAL OF CONTROLLED RELEASE, 2002, 80 (1-3) : 247 - 257
  • [2] BARREIROIGLESIA.R, IN PRESS EUR J PHARM
  • [3] Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications
    Berger, J
    Reist, M
    Mayer, JM
    Felt, O
    Gurny, R
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2004, 57 (01) : 35 - 52
  • [4] Effects of ligand binding on relative stability of subchain conformations of weakly charged N-isopropylacrylamide gels in swollen and shrunken states
    Burova, TV
    Grinberg, NV
    Dubovik, AS
    Tanaka, K
    Grinberg, VY
    Grosberg, AY
    [J]. MACROMOLECULES, 2003, 36 (24) : 9115 - 9121
  • [5] The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives:: benzoic acid/Na and ibuprofen/Na
    Bustamante, P
    Peña, MA
    Barra, J
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2000, 194 (01) : 117 - 124
  • [6] Novel injectable neutral solutions of chitosan form biodegradable gels in situ
    Chenite, A
    Chaput, C
    Wang, D
    Combes, C
    Buschmann, MD
    Hoemann, CD
    Leroux, JC
    Atkinson, BL
    Binette, F
    Selmani, A
    [J]. BIOMATERIALS, 2000, 21 (21) : 2155 - 2161
  • [7] Atypical polysaccharide physical gels: Structure/property relationships
    Clayer, A
    Vachoud, L
    Viton, C
    Domard, A
    [J]. MACROMOLECULAR SYMPOSIA, 2003, 200 : 1 - 8
  • [8] Effect of chemical crosslinking on the swelling and shrinking properties of thermal and pH-responsive chitosan hydrogels
    Goycoolea, FM
    Heras, A
    Aranaz, I
    Galed, G
    Fernández-Valle, ME
    Argüelles-Monal, W
    [J]. MACROMOLECULAR BIOSCIENCE, 2003, 3 (10) : 612 - 619
  • [9] Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. : 1. : Dynamic effects
    Grinberg, NV
    Dubovik, AS
    Grinberg, VY
    Kuznetsov, DV
    Makhaeva, EE
    Grosberg, AY
    Tanaka, T
    [J]. MACROMOLECULES, 1999, 32 (05) : 1471 - 1475
  • [10] Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry.: 2.: Thermodynamic functions
    Grinberg, VY
    Dubovik, AS
    Kuznetsov, DV
    Grinberg, NV
    Grosberg, AY
    Tanaka, T
    [J]. MACROMOLECULES, 2000, 33 (23) : 8685 - 8692