3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics

被引:274
作者
Bazilevs, Y. [1 ]
Hsu, M. -C. [1 ]
Akkerman, I. [1 ]
Wright, S. [2 ]
Takizawa, K. [2 ]
Henicke, B. [2 ]
Spielman, T. [2 ]
Tezduyar, T. E. [2 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Rice Univ, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
wind turbine rotor; wind turbine blades; fluid-structure interaction; geometry modeling; isogeometric analysis; NURBS; rotating turbulent flow; aerodynamic torque; FLUID-STRUCTURE INTERACTIONS; FINITE-ELEMENT COMPUTATION; DIRECT NUMERICAL-SIMULATION; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE-FLOW COMPUTATIONS; DIRICHLET BOUNDARY-CONDITIONS; GENERALIZED-ALPHA METHOD; SPACE-TIME PROCEDURE; TAYLOR-COUETTE FLOW; SLIP MESH UPDATE;
D O I
10.1002/fld.2400
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this two-part paper we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2 we focus on the structural discretization for wind turbine blades and the details of the fluid-structure interaction computational procedures. The methods developed are applied to the simulation of the NREL 5MW offshore baseline wind turbine rotor. The simulations are performed at realistic wind velocity and rotor speed conditions and at full spatial scale. Validation against published data is presented and possibilities of the newly developed computational framework are illustrated on several examples. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:207 / 235
页数:29
相关论文
共 102 条
[1]   The role of continuity in residual-based variational multiscale modeling of turbulence [J].
Akkerman, I. ;
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Hulshoff, S. .
COMPUTATIONAL MECHANICS, 2008, 41 (03) :371-378
[2]  
[Anonymous], ENCY COMPUTATIONAL M
[3]  
[Anonymous], 2003, DOWECF1W2HJK010469
[4]   The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Lovadina, C. ;
Reali, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :314-323
[5]   NURBS-based isogeometric analysis for the computation of flows about rotating components [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :143-150
[6]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[7]   Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Reali, A. ;
Scovazzi, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :173-201
[8]   Weak Dirichlet boundary conditions for wall-bounded turbulent flows [J].
Bazilevs, Y. ;
Michler, C. ;
Calo, V. M. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (49-52) :4853-4862
[9]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[10]   Weak imposition of Dirichlet boundary conditions in fluid mechanics [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTERS & FLUIDS, 2007, 36 (01) :12-26