Conjugated polymer nanostructures for organic solar cell applications

被引:186
作者
Chen, Jiun-Tai [1 ]
Hsu, Chain-Shu [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Chem, Hsinchu 30049, Taiwan
关键词
BLOCK-COPOLYMER TEMPLATES; PHOTOVOLTAIC CELLS; THIN-FILMS; HIGHLY EFFICIENT; POLY(3-HEXYLTHIOPHENE) NANOFIBERS; AQUEOUS DISPERSION; MESOPOROUS TITANIA; PHASE-SEPARATION; POROUS TEMPLATES; FACILE SYNTHESIS;
D O I
10.1039/c1py00275a
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Recently, there has been tremendous progress in the development of polymer-based organic solar cells. Polymer-based solar cells have attracted a great deal of attention because they have the potential to be efficient, inexpensive, and solution processable. New materials, nanostructures, device designs, and processing methods have been developed to achieve high device efficiencies. This review focuses on the fabrication techniques of conjugated polymer nanostructures and their applications for organic solar cells. We will first introduce the fundamental knowledge of organic solar cells and emphasize the importance of nanostructures. Then we will discuss different strategies for fabricating conjugated polymer nanostructures, including topics such as polymer nanowires, nanoparticles, block copolymers, layer-by-layer deposition, nanoimprint lithography, template methods, nanoelectrodes, and porous inorganic materials. The effects of the nanostructures on the device performance will also be presented. Efficiencies higher than 10% are expected for polymer-based solar cells by using new materials and techniques.
引用
收藏
页码:2707 / 2722
页数:16
相关论文
共 156 条
[1]  
ALMAWLAWI D, 1991, J APPL PHYS, V70, P4421, DOI 10.1063/1.349125
[2]   Track etching technique in membrane technology [J].
Apel, P .
RADIATION MEASUREMENTS, 2001, 34 (1-6) :559-566
[3]   Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography [J].
Aryal, Mukti ;
Trivedi, Krutarth ;
Hu, Wenchuang .
ACS NANO, 2009, 3 (10) :3085-3090
[4]   Imprinted large-scale high density polymer nanopillars for organic solar cells [J].
Aryal, Mukti ;
Buyukserin, Fatih ;
Mielczarek, Kamil ;
Zhao, Xiao-Mei ;
Gao, Jinming ;
Zakhidov, Anvar ;
Hu, Wenchuang .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (06) :2562-2566
[5]   BLOCK COPOLYMER THERMODYNAMICS - THEORY AND EXPERIMENT [J].
BATES, FS ;
FREDRICKSON, GH .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 (01) :525-557
[6]   Design of multilayered nanostructures and donor-acceptor interfaces in solution-processed thin-film organic solar cells [J].
Benten, Hiroaki ;
Ogawa, Michihiro ;
Ohkita, Hideo ;
Ito, Shinzaburo .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (10) :1563-1572
[7]   Poly (3-hexylthiophene) fibers for photovoltaic applications [J].
Berson, Solenn ;
De Bettignies, Remi ;
Bailly, Severine ;
Guillerez, Stephane .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (08) :1377-1384
[8]   Controlling the morphology of nanofiber-P3HT:PCBM blends for organic bulk heterojunction solar cells [J].
Bertho, Sabine ;
Oosterbaan, Wibren D. ;
Vrindts, Veerle ;
D'Haen, Jan ;
Cleij, Thomas J. ;
Lutsen, Laurence ;
Manca, Jean ;
Vanderzande, Dirk .
ORGANIC ELECTRONICS, 2009, 10 (07) :1248-1251
[9]   Minimizing Lateral Domain Collapse in Etched Poly(3-hexylthiophene)-block-Polylactide Thin Films for Improved Optoelectronic.Performance [J].
Botiz, Ioan ;
Martinson, Alex B. F. ;
Darling, Seth B. .
LANGMUIR, 2010, 26 (11) :8756-8761
[10]   Self-Assembly of Poly(3-hexylthiophene)-block-polylactide Block Copolymer and Subsequent Incorporation of Electron Acceptor Material [J].
Botiz, Ioan ;
Darling, Seth B. .
MACROMOLECULES, 2009, 42 (21) :8211-8217