Rat1p and Rai1p function with the nuclear exosome in the processing and degradation of rRNA precursors

被引:52
作者
Fang, F [1 ]
Phillips, S [1 ]
Butler, JS [1 ]
机构
[1] Univ Rochester, Med Ctr, Dept Microbiol & Immunol, Rochester, NY 14642 USA
关键词
rRNA processing; exoribonucleases; nuclear exosome;
D O I
10.1261/rna.2900205
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Exoribonucleases function in the processing and degradation of a variety of RNAs in all organisms. These enzymes play a particularly important role in the maturation of rRNAs and in a quality-control pathway that degrades rRNA precursors upon inhibition of ribosome biogenesis. Strains with defects in 3'-5' exoribonucleolytic components of the RNA processing exosome accumulate polyadenylated precursor rRNAs that also arise in strains with ribosome biogenesis defects. These findings suggested that polyadenylation might target pre-rRNAs for degradation by the exosome. Here we report experiments that indicate a role for the 5'-3' exoribonuclease Rat1p and its associated protein Rail p in the degradation of poly(A)(+) pre-rRNAs. Depletion of Rat1p enhances the amount of poly(A)(+) pre-rRNA that accumulates in strains deleted for the exosome subunit Rrp6p and decreases their 5' heterogeneity. Deletion of RAI1 results in the accumulation of poly(A)(+) pre-rRNAs, and inhibits Rat1p-dependent 5'-end processing and Rrp6p-dependent 3'-end processing of 5.8S rRNA. RAT1 and RAI1 mutations cause synergistic growth defects in the presence of rrp6-Delta, consistent with the interdependence of 5'-end and T-end processing pathways. These findings suggest that Rail p may coordinate the 5'-end and 3'-end processing and degradation activities of Rat1p and the nuclear exosome.
引用
收藏
页码:1571 / 1578
页数:8
相关论文
共 29 条
[1]   The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases [J].
Allmang, C ;
Petfalski, E ;
Podtelejnikov, A ;
Mann, M ;
Tollervey, D ;
Mitchell, P .
GENES & DEVELOPMENT, 1999, 13 (16) :2148-2158
[2]   Functions of the exosome in rRNA, snoRNA and snRNA synthesis [J].
Allmang, C ;
Kufel, J ;
Chanfreau, G ;
Mitchell, P ;
Petfalski, E ;
Tollervey, D .
EMBO JOURNAL, 1999, 18 (19) :5399-5410
[3]   Degradation of ribosomal RNA precursors by the exosome [J].
Allmang, Christine ;
Mitchell, Philip ;
Petfalski, Elisabeth ;
Tollervey, David .
NUCLEIC ACIDS RESEARCH, 2000, 28 (08) :1684-1691
[4]   ISOLATION AND CHARACTERIZATION OF RAT1 - AN ESSENTIAL GENE OF SACCHAROMYCES-CEREVISIAE REQUIRED FOR THE EFFICIENT NUCLEOCYTOPLASMIC TRAFFICKING OF MESSENGER-RNA [J].
AMBERG, DC ;
GOLDSTEIN, AL ;
COLE, CN .
GENES & DEVELOPMENT, 1992, 6 (07) :1173-1189
[5]   Identification of a regulated pathway for nuclear pre-mRNA turnover [J].
Bousquet-Antonelli, C ;
Presutti, C ;
Tollervey, D .
CELL, 2000, 102 (06) :765-775
[6]   Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation [J].
Briggs, MW ;
Burkard, KTD ;
Butler, JS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :13255-13263
[7]   A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Npl3p [J].
Burkard, KTD ;
Butler, JS .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (02) :604-616
[8]   Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae [J].
Das, B ;
Butler, JS ;
Sherman, F .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (16) :5502-5515
[9]   Ng12p is a Ccr4p-like RNA nuclease essential for the final step in 3'-end processing of 5.8S rRNA in Saccharomyces cerevisiae [J].
Faber, AW ;
Van Dijk, M ;
Raué, HA ;
Vos, JC .
RNA, 2002, 8 (09) :1095-1101
[10]   5-fluorouracil enhances exosome-dependent accumulation of polyadenylated rRNAs [J].
Fang, F ;
Hoskins, J ;
Butler, JS .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (24) :10766-10776