Bioreactor development for stem cell expansion and controlled differentiation

被引:162
作者
King, James A.
Miller, William M.
机构
[1] Northwestern Univ, Dept Biol & Chem Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL USA
关键词
D O I
10.1016/j.cbpa.2007.05.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Widespread use of embryonic and adult stem cells for therapeutic applications will require reproducible production of large numbers of well-characterized cells under well-controlled conditions in bioreactors. During the past two years, substantial progress has been made towards this goal. Human mesenchymal stem cells expanded in perfused scaffolds retained multi-lineage potential. Mouse neural stem cells were expanded as aggregates in serum-free medium for 44 days in stirred bioreactors. Mouse embryonic stem cells expanded as aggregates and on microcarriers in stirred vessels retained expression of stem cell markers and could form embryoid bodies. Embryoid body formation from dissociated mouse embryonic stem cells, followed by embryoid body expansion and directed differentiation, was scaled up to gas-sparged, 2-I instrumented bioreactors with pH and oxygen control.
引用
收藏
页码:394 / 398
页数:5
相关论文
共 37 条
[1]   Expansion of mouse embryonic stem cells on microcarriers [J].
Abranches, Elsa ;
Bekman, Evguenia ;
Henrique, Domingos ;
Cabral, Joaquim M. S. .
BIOTECHNOLOGY AND BIOENGINEERING, 2007, 96 (06) :1211-1221
[2]   Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output [J].
Bauwens, C ;
Yin, T ;
Dang, S ;
Peerani, R ;
Zandstra, PW .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 90 (04) :452-461
[3]   Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts [J].
Braccini, A ;
Wendt, D ;
Jaquiery, C ;
Jakob, M ;
Heberer, M ;
Kenins, L ;
Wodnar-Filipowicz, A ;
Quarto, R ;
Martin, I .
STEM CELLS, 2005, 23 (08) :1066-1072
[4]   Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation [J].
Cameron, C. M. ;
Hu, Wei-Shou ;
Kaufman, Dan S. .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 94 (05) :938-948
[5]   Production of islet-like structures from neonatal porcine pancreatic tissue in suspension bioreactors [J].
Chawla, M ;
Bodnar, CA ;
Sen, A ;
Kallos, MS ;
Behie, LA .
BIOTECHNOLOGY PROGRESS, 2006, 22 (02) :561-567
[6]   Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells [J].
Chen, Xi ;
Xu, Haibo ;
Wan, Chao ;
McCaigue, Mervyn ;
Li, Gang .
STEM CELLS, 2006, 24 (09) :2052-2059
[7]   Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors [J].
Cormier, Jaymi T. ;
Zur Nieden, Nicole I. ;
Rancourt, Derrick E. ;
Kallos, Michael S. .
TISSUE ENGINEERING, 2006, 12 (11) :3233-3245
[8]   Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells [J].
D'Ippolito, Gianluca ;
Diabira, Sylma ;
Howard, Guy A. ;
Roos, Bernard A. ;
Schiller, Paul C. .
BONE, 2006, 39 (03) :513-522
[9]   Low O2 tensions and the prevention of differentiation of hES cells [J].
Ezashi, T ;
Das, P ;
Roberts, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (13) :4783-4788
[10]   Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation [J].
Fok, EYL ;
Zandstra, PW .
STEM CELLS, 2005, 23 (09) :1333-1342