Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation

被引:180
作者
Fok, EYL [1 ]
Zandstra, PW [1 ]
机构
[1] Univ Toronto, Dept Chem Engn & Appl Chem, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada
关键词
embryonic stem cells; embryoid bodies; scalable bioreactor; stirred-suspension culture; microcarriers; aggregates; E-cadherin;
D O I
10.1634/stemcells.2005-0112
中图分类号
Q813 [细胞工程];
学科分类号
摘要
To facilitate the exploitation of embryonic stem cells (ESCs) and ESC-derived cells, scale-up of cell production and optimization of culture conditions are necessary. Conventional ESC culture methods are impractical for large-scale cell production and lack robust microenvironmental control. We developed two stirred-suspension culture systems for the propagation of undifferentiated ESCs - microcarrier and aggregate cultures-and compared them with tissue-culture flask and Petri dish controls. ESCs cultured on glass microcarriers had population doubling times (similar to 14 - 17 hours) comparable to tissue-culture flask controls. ESC growth could be elicited in shear-controlled stirred-suspension culture, with population doubling times ranging between 24 and 39 hours at 100 rpm impeller speed. Upon removal of leukemia inhibitory factor, the size-controlled ESC aggregates developed into embryoid bodies (EBs) capable of multilineage differentiation. A comprehensive analysis of ESC developmental potential, including flow cytometry for Oct-4, SSEA-1, and E-cadherin protein expression, reverse transcription-polymerase chain reaction for Flk-1, HNF3-beta, MHC, and Sox-1 gene expression, and EB differentiation analysis, demonstrated that the suspension-cultured ESCs retained the developmental potential of the starting cell population. Analysis of E-cadherin(-/-) and E-cadherin(+/-) cells using both systems provided insight into the mechanisms behind the role of cell aggregation control, which is fundamental to these observations. These cell-culture tools should prove useful for both the production of ESCs and ESC-derived cells and for investigations into adhesion, survival, and differentiation phenomena during ESC propagation and differentiation.
引用
收藏
页码:1333 / 1342
页数:10
相关论文
共 33 条
[1]   Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output [J].
Bauwens, C ;
Yin, T ;
Dang, S ;
Peerani, R ;
Zandstra, PW .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 90 (04) :452-461
[2]  
Castilho Leda R, 2002, Adv Biochem Eng Biotechnol, V74, P129
[3]   TRANSIENT SHEAR STRESSES ON A SUSPENSION CELL IN TURBULENCE [J].
CHERRY, RS ;
KWON, KY .
BIOTECHNOLOGY AND BIOENGINEERING, 1990, 36 (06) :563-571
[4]   PHYSICAL-MECHANISMS OF CELL-DAMAGE IN MICROCARRIER CELL-CULTURE BIOREACTORS [J].
CHERRY, RS ;
PAPOUTSAKIS, ET .
BIOTECHNOLOGY AND BIOENGINEERING, 1988, 32 (08) :1001-1014
[5]   Industrial choices for protein production by large-scale cell culture [J].
Chu, L ;
Robinson, DK .
CURRENT OPINION IN BIOTECHNOLOGY, 2001, 12 (02) :180-187
[6]   VISCOUS REDUCTION OF TURBULENT DAMAGE IN ANIMAL-CELL CULTURE [J].
CROUGHAN, MS ;
SAYRE, ES ;
WANG, DIC .
BIOTECHNOLOGY AND BIOENGINEERING, 1989, 33 (07) :862-872
[7]   HYDRODYNAMIC EFFECTS ON ANIMAL-CELLS GROWN IN MICROCARRIER CULTURES [J].
CROUGHAN, MS ;
HAMEL, JF ;
WANG, DIC .
BIOTECHNOLOGY AND BIOENGINEERING, 1987, 29 (01) :130-141
[8]   Controlled, scalable embryonic stem cell differentiation culture [J].
Dang, SM ;
Gerecht-Nir, S ;
Chen, J ;
Itskovitz-Eldor, J ;
Zandstra, PW .
STEM CELLS, 2004, 22 (03) :275-282
[9]   Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems [J].
Dang, SM ;
Kyba, M ;
Perlingeiro, R ;
Daley, GQ ;
Zandstra, PW .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 78 (04) :442-453
[10]  
Dang Stephen M, 2005, Methods Mol Biol, V290, P353