How is protein aggregation in amyloidogenic diseases modulated by biological membranes?

被引:162
作者
Aisenbrey, Christopher [1 ]
Borowik, Tomasz [2 ]
Bystrom, Roberth [1 ]
Bokvist, Marcus [1 ]
Lindstrom, Fredrick [1 ]
Misiak, Hanna [2 ]
Sani, Marc-Antoine [1 ]
Grobner, Gerhard [1 ]
机构
[1] Umea Univ, Dept Chem, S-90187 Umea, Sweden
[2] Wroclaw Univ Technol, Inst Biomed Engn, PL-50370 Wroclaw, Poland
来源
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS | 2008年 / 37卷 / 03期
关键词
D O I
10.1007/s00249-007-0237-0
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The fate of proteins with amyloidogenic properties depends critically on their immediate biochemical environment. However, the role of biological interfaces such as membrane surfaces, as promoters of pathological aggregation of amyloidogenic proteins, is rarely studied and only established for the amyloid-beta protein (A beta) involved in Alzheimer's disease, and alpha-synuclein in Parkinsonism. The occurrence of binding and misfolding of these proteins on membrane surfaces, is poorly understood, not at least due to the two-dimensional character of this event. Clearly, the nature of the folding pathway for A beta protein adsorbed upon two-dimensional aggregation templates, must be fundamentally different from the three-dimensional situation in solution. Here, we summarize the current research and focus on the function of membrane interfaces as aggregation templates for amyloidogenic proteins (and even prionic ones). One major aspect will be the relationship between membrane properties and protein association and the consequences for amyloidogenic products. The other focus will be on a general understanding of protein folding pathways on two-dimensional templates on a molecular level. Finally, we will demonstrate the potential importance of membrane-mediated aggregation for non-amphiphatic soluble amyloidogenic proteins, by using the SOD1 protein involved in the amyotrophic lateral sclerosis syndrome.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 64 条
[1]   DISTRIBUTION OF PHOSPHORUS-CONTAINING LIPID COMPOUNDS IN HUMAN BRAIN [J].
BALAKRISHNAN, S ;
GOODWIN, H ;
CUMINGS, JN .
JOURNAL OF NEUROCHEMISTRY, 1961, 8 (3-4) :276-&
[2]   Delineating common molecular mechanisms in Alzheimer's and prion diseases [J].
Barnham, Kevin J. ;
Cappai, Roberto ;
Beyreuther, Konrad ;
Masters, Colin L. ;
Hill, Andrew F. .
TRENDS IN BIOCHEMICAL SCIENCES, 2006, 31 (08) :465-472
[3]   Neurodegenerative diseases and oxidative stress [J].
Barnham, KJ ;
Masters, CL ;
Bush, AI .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (03) :205-214
[4]   Neurotoxic, redox-competent Alzheimer's β-amyloid is released from lipid membrane by methionine oxidation [J].
Barnham, KJ ;
Ciccotosto, GD ;
Tickler, AK ;
Ali, FE ;
Smith, DG ;
Williamson, NA ;
Lam, YH ;
Carrington, D ;
Tew, D ;
Kocak, G ;
Volitakis, I ;
Separovic, F ;
Barrow, CJ ;
Wade, JD ;
Masters, CL ;
Cherny, RA ;
Curtain, CC ;
Bush, AI ;
Cappai, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (44) :42959-42965
[5]   Two types of Alzheimer's β-amyloid (1-40) peptide membrane interactions:: Aggregation preventing transmembrane anchoring Versus accelerated surface fibril formation [J].
Bokvist, M ;
Lindström, F ;
Watts, A ;
Gröbner, G .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 335 (04) :1039-1049
[6]   Interaction of the lantibiotic nisin with mixed lipid bilayers:: A 31P and 2H NMR study [J].
Bonev, BB ;
Chan, WC ;
Bycroft, BW ;
Roberts, GCK ;
Watts, A .
BIOCHEMISTRY, 2000, 39 (37) :11425-11433
[7]   Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1 [J].
Bruijn, LI ;
Houseweart, MK ;
Kato, S ;
Anderson, KL ;
Anderson, SD ;
Ohama, E ;
Reaume, AG ;
Scott, RW ;
Cleveland, DW .
SCIENCE, 1998, 281 (5384) :1851-1854
[8]   Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases [J].
Bucciantini, M ;
Giannoni, E ;
Chiti, F ;
Baroni, F ;
Formigli, L ;
Zurdo, JS ;
Taddei, N ;
Ramponi, G ;
Dobson, CM ;
Stefani, M .
NATURE, 2002, 416 (6880) :507-511
[9]   Cardiotoxin II segregates phosphatidylglycerol from mixtures with phosphatidylcholine: P-31 and H-2 NMR spectroscopic evidence [J].
Carbone, MA ;
Macdonald, PM .
BIOCHEMISTRY, 1996, 35 (11) :3368-3378
[10]   Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice [J].
Cherny, RA ;
Atwood, CS ;
Xilinas, ME ;
Gray, DN ;
Jones, WD ;
McLean, CA ;
Barnham, KJ ;
Volitakis, I ;
Fraser, FW ;
Kim, YS ;
Huang, XD ;
Goldstein, LE ;
Moir, RD ;
Lim, JT ;
Beyreuther, K ;
Zheng, H ;
Tanzi, RE ;
Masters, CL ;
Bush, AI .
NEURON, 2001, 30 (03) :665-676