An application of the matrix volume in probability

被引:11
作者
Ben-Israel, A [1 ]
机构
[1] Rutgers State Univ, RUTCOR Rutgers Ctr Operat Res, Piscataway, NJ 08854 USA
关键词
determinants; Jacobians; matrix volume; change-of-variables in integration; surface integrals; geometric probabilities; distributions; radon transforms;
D O I
10.1016/S0024-3795(00)00226-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an n-dimensional random variable X with a joint density f(X)(x(1),.,., x(n)), the density of Y = h (X) is computed as a surface integral of fx in two cases: (a) h linear, and (b) h sum of squares, The integrals use the volume of the Jacobian matrix in a change-of-variables formula. (C) 2000 Elsevier Science Inc, All rights reserved. AMS classification: Primary 15A15, 60D05; Secondary 26B15.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 10 条
[1]   The change-of-variables formula using matrix volume [J].
Ben-Israel, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) :300-312
[2]   A VOLUME ASSOCIATED WITH MXN MATRICES [J].
BENISRAEL, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 167 :87-111
[3]  
BIRNBAUM ZW, 1962, INTRO PROBABILITY MA
[4]  
DEANS SR, 1993, RADON TRANSFORM ITS
[5]  
*DER, TEX INSTR
[6]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[7]  
HARRIS B, 1966, THEORY PROBABILITY
[8]  
Muller C, 1966, LECT NOTES MATH, V17
[9]  
NATTERER F, 1986, MATH COMPUTERIZED TO
[10]  
Springer M., 1979, ALGEBRA RANDOM VARIA