Systematic computation of the least unstable periodic orbits in chaotic attractors

被引:36
作者
Diakonos, FK [1 ]
Schmelcher, P
Biham, O
机构
[1] Univ Athens, Dept Phys, GR-15771 Athens, Greece
[2] Inst Phys Chem, D-69120 Heidelberg, Germany
[3] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
关键词
D O I
10.1103/PhysRevLett.81.4349
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a recently proposed numerical technique for the calculation of unstable periodic orbits in chaotic attractors is capable of finding the least unstable periodic orbits of any given order. This is achieved by introducing a modified dynamical system which has the same set of periodic orbits as the original chaotic system, but with a tuning parameter which is used to stabilize the orbits selectively. This technique is central for calculations using the stability criterion for the truncation of cycle expansions, which provide highly improved convergence of calculations of dynamical averages in generic chaotic attractors. The approach is demonstrated for the Henon attractor. [S0031-9007(98)07731-X].
引用
收藏
页码:4349 / 4352
页数:4
相关论文
共 19 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]   RECYCLING OF STRANGE SETS .1. CYCLE EXPANSIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :325-359
[3]   PROGRESS IN THE ANALYSIS OF EXPERIMENTAL CHAOS THROUGH PERIODIC-ORBITS [J].
BADII, R ;
BRUN, E ;
FINARDI, M ;
FLEPP, L ;
HOLZNER, R ;
PARISI, J ;
REYL, C ;
SIMONET, J .
REVIEWS OF MODERN PHYSICS, 1994, 66 (04) :1389-1415
[4]   UNSTABLE PERIODIC-ORBITS IN THE STADIUM BILLIARD [J].
BIHAM, O ;
KVALE, M .
PHYSICAL REVIEW A, 1992, 46 (10) :6334-6339
[5]   CHARACTERIZATION OF UNSTABLE PERIODIC-ORBITS IN CHAOTIC ATTRACTORS AND REPELLERS [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :819-822
[6]   UNSTABLE PERIODIC-ORBITS AND THE SYMBOLIC DYNAMICS OF THE COMPLEX HENON MAP [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW A, 1990, 42 (08) :4639-4646
[7]   TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS [J].
CVITANOVIC, P ;
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 38 (03) :1503-1520
[8]   INVARIANT MEASUREMENT OF STRANGE SETS IN TERMS OF CYCLES [J].
CVITANOVIC, P .
PHYSICAL REVIEW LETTERS, 1988, 61 (24) :2729-2732
[9]   PERIODIC ORBIT QUANTIZATION OF BOUND CHAOTIC SYSTEMS [J].
DAHLQVIST, P ;
RUSSBERG, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20) :4763-4778
[10]   Stability ordering of cycle expansions [J].
Dettmann, CP ;
Morriss, GP .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4201-4204