The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing

被引:290
作者
Schuster, M
Hawkins, AC
Harwood, CS
Greenberg, EP
机构
[1] Univ Iowa, Roy & Lucille Carver Coll Med, Dept Microbiol, Iowa City, IA 52242 USA
[2] Univ Iowa, WM Keck Microbial Communities & Cell Signaling Pr, Iowa City, IA 52242 USA
关键词
D O I
10.1046/j.1365-2958.2003.03886.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Escherichia coli and some other gamma-Proteobacteria, the alternative sigma factor RpoS functions as a regulator of the general stress response. The role of RpoS in Pseudomonas aeruginosa is not clear. Although P. aeruginosa RpoS contributes to the resistance to several environmental stresses, its role appears to be less pivotal than in E. coli. In P. aeruginosa, RpoS also regulates the production of several virulence factors and influences the expression of individual genes that are controlled by quorum sensing. Some quorum-controlled genes are induced by RpoS, whereas others are repressed. To gain insights about RpoS function in P. aeruginosa and to understand better the regulation of quorum-controlled genes, we used transcript profiling to define an RpoS regulon. We identified 772 genes regulated by RpoS in stationary but not in logarithmic growth phase (504 were induced and 268 were repressed), and we identified putative RpoS promoter sequence elements with similarity to the E. coli RpoS consensus in several of these genes. Many genes in the regulon, for example a set of chemotaxis genes, have assigned functions that are distinct from those in E. coli and are not obviously related to a stress response. Furthermore, RpoS affects the expression of more than 40% of all quorum-controlled genes identified in our previous transcriptome analysis. This highlights the significance of RpoS as a global factor that controls quorum-sensing gene expression at the onset of stationary phase. The transcription profiling results have allowed us to build a model that accommodates previous seemingly conflicting reports.
引用
收藏
页码:973 / 985
页数:13
相关论文
共 35 条
[1]   Vfr controls quorum sensing in Pseudomonas aeruginosa [J].
Albus, AM ;
Pesci, EC ;
RunyenJanecky, LJ ;
West, SEH ;
Iglewski, BH .
JOURNAL OF BACTERIOLOGY, 1997, 179 (12) :3928-3935
[2]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[3]   QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa [J].
Chugani, SA ;
Whiteley, M ;
Lee, KM ;
D'Argenio, D ;
Manoil, C ;
Greenberg, EP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2752-2757
[4]   The involvement of cell-to-cell signals in the development of a bacterial biofilm [J].
Davies, DG ;
Parsek, MR ;
Pearson, JP ;
Iglewski, BH ;
Costerton, JW ;
Greenberg, EP .
SCIENCE, 1998, 280 (5361) :295-298
[5]   Advancing the quorum in Pseudomonas aeruginosa:: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression [J].
Diggle, SP ;
Winzer, K ;
Lazdunski, A ;
Williams, P ;
Cámara, M .
JOURNAL OF BACTERIOLOGY, 2002, 184 (10) :2576-2586
[6]  
EspinosaUrgel M, 1996, MOL MICROBIOL, V21, P657
[7]   Negative regulation by RpoS:: a case of sigma factor competition [J].
Farewell, A ;
Kvint, K ;
Nyström, T .
MOLECULAR MICROBIOLOGY, 1998, 29 (04) :1039-1051
[8]   CONSTRUCTION OF BROAD-HOST-RANGE PLASMID VECTORS FOR EASY VISIBLE SELECTION AND ANALYSIS OF PROMOTERS [J].
FARINHA, MA ;
KROPINSKI, AM .
JOURNAL OF BACTERIOLOGY, 1990, 172 (06) :3496-3499
[9]   Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response [J].
Ferrández, A ;
Hawkins, AC ;
Summerfield, DT ;
Harwood, CS .
JOURNAL OF BACTERIOLOGY, 2002, 184 (16) :4374-4383
[10]   TRANSCRIPTION OF THE PRINCIPAL SIGMA-FACTOR GENES, RPOD AND RPOS, IN PSEUDOMONAS-AERUGINOSA IS CONTROLLED ACCORDING TO THE GROWTH-PHASE [J].
FUJITA, M ;
TANAKA, K ;
TAKAHASHI, H ;
AMEMURA, A .
MOLECULAR MICROBIOLOGY, 1994, 13 (06) :1071-1077