Low order-value approach for solving VaR-constrained optimization problems

被引:10
作者
Birgin, E. G. [1 ]
Bueno, L. F. [2 ]
Krejic, N. [3 ]
Martinez, J. M. [2 ]
机构
[1] Univ Sao Paulo, Dept Comp Sci IME USP, BR-05508090 Sao Paulo, Brazil
[2] Univ Estadual Campinas, Inst Math Stat & Sci Comp IMECC, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
[3] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia
基金
巴西圣保罗研究基金会;
关键词
Optimization; Augmented Lagrangian; Order-value optimization; Low order-value optimization; Value at risk; Numerical algorithms; LINEAR-DEPENDENCE CONDITION; ALPHA-BB; PORTFOLIO OPTIMIZATION; RISK; SELECTION; NLPS;
D O I
10.1007/s10898-011-9656-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In Low Order-Value Optimization (LOVO) problems the sum of the r smallest values of a finite sequence of q functions is involved as the objective to be minimized or as a constraint. The latter case is considered in the present paper. Portfolio optimization problems with a constraint on the admissible Value at Risk (VaR) can be modeled in terms of a LOVO problem with constraints given by Low order-value functions. Different algorithms for practical solution of this problem will be presented. Using these techniques, portfolio optimization problems with transaction costs will be solved.
引用
收藏
页码:715 / 742
页数:28
相关论文
共 40 条
[1]   A global optimization method, alpha BB, for process design [J].
Adjiman, CS ;
Androulakis, IP ;
Maranas, CD ;
Floudas, CA .
COMPUTERS & CHEMICAL ENGINEERING, 1996, 20 :S419-S424
[2]   A global optimization method, αBB, for general twice-differentiable constrained NLPs -: I.: Theoretical advances [J].
Adjiman, CS ;
Dallwig, S ;
Floudas, CA ;
Neumaier, A .
COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 (09) :1137-1158
[3]   A global optimization method, αBB, for general twice-differentiable constrained NLPs -: II.: Implementation and computational results [J].
Adjiman, CS ;
Androulakis, IP ;
Floudas, CA .
COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 (09) :1159-1179
[4]  
Almgren R., 2001, J. Risk, DOI DOI 10.21314/JOR.2001.041
[5]  
Almgren R.F., 2003, APPL MATH FINANCE, V10, P1, DOI DOI 10.1080/135048602100056
[6]   ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1286-1309
[7]   On the relation between constant positive linear dependence condition and quasinormality constraint qualification [J].
Andreani, R ;
Martinez, JM ;
Schuverdt, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (02) :473-485
[8]   Nonlinear-programming reformulation of the order-value optimization problem [J].
Andreani, R ;
Dunder, C ;
Martínez, JM .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2005, 61 (03) :365-384
[9]   Order-Value Optimization:: Formulation and solution by means of a primal cauchy method [J].
Andreani, R ;
Dunder, C ;
Martínez, JM .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2003, 58 (03) :387-399
[10]   Low Order-Value Optimization and applications [J].
Andreani, R. ;
Martinez, J. M. ;
Martinez, L. ;
Yano, F. S. .
JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (01) :1-22