Low order-value approach for solving VaR-constrained optimization problems

被引:10
作者
Birgin, E. G. [1 ]
Bueno, L. F. [2 ]
Krejic, N. [3 ]
Martinez, J. M. [2 ]
机构
[1] Univ Sao Paulo, Dept Comp Sci IME USP, BR-05508090 Sao Paulo, Brazil
[2] Univ Estadual Campinas, Inst Math Stat & Sci Comp IMECC, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
[3] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia
基金
巴西圣保罗研究基金会;
关键词
Optimization; Augmented Lagrangian; Order-value optimization; Low order-value optimization; Value at risk; Numerical algorithms; LINEAR-DEPENDENCE CONDITION; ALPHA-BB; PORTFOLIO OPTIMIZATION; RISK; SELECTION; NLPS;
D O I
10.1007/s10898-011-9656-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In Low Order-Value Optimization (LOVO) problems the sum of the r smallest values of a finite sequence of q functions is involved as the objective to be minimized or as a constraint. The latter case is considered in the present paper. Portfolio optimization problems with a constraint on the admissible Value at Risk (VaR) can be modeled in terms of a LOVO problem with constraints given by Low order-value functions. Different algorithms for practical solution of this problem will be presented. Using these techniques, portfolio optimization problems with transaction costs will be solved.
引用
收藏
页码:715 / 742
页数:28
相关论文
共 40 条
[11]  
Andreani R., OPTIMIZATIO IN PRESS
[12]  
Andreani R., 2006, Pac J Optim, V2, P11
[13]   Continuous optimization methods for structure alignments [J].
Andreani, Roberto ;
Martinez, Jose Mario ;
Martinez, Leandro ;
Yano, Flavio .
MATHEMATICAL PROGRAMMING, 2008, 112 (01) :93-124
[14]   alpha BB: A global optimization method for general constrained nonconvex problems [J].
Androulakis, IP ;
Maranas, CD ;
Floudas, CA .
JOURNAL OF GLOBAL OPTIMIZATION, 1995, 7 (04) :337-363
[15]  
[Anonymous], 1969, Optimization
[16]  
[Anonymous], 2009, Encyclopedia of Optimization
[17]  
[Anonymous], 2002, Handbook of Applied Optimization
[18]   An old-new concept of convex risk measures: The optimized certainty equivalent [J].
Ben-Tal, Aharon ;
Teboulle, Marc .
MATHEMATICAL FINANCE, 2007, 17 (03) :449-476
[19]   Portfolio selection and transactions costs [J].
Best, MJ ;
Hlouskova, J .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 24 (01) :95-116
[20]   Global minimization using an Augmented Lagrangian method with variable lower-level constraints [J].
Birgin, E. G. ;
Floudas, C. A. ;
Martinez, J. M. .
MATHEMATICAL PROGRAMMING, 2010, 125 (01) :139-162