Finite element heterogeneous multiscale methods with near optimal computational complexity

被引:35
作者
Abdulle, Assyr [1 ,2 ]
Engquist, Bjorn [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
multiscale method; heterogeneous finite element method; spectral method; elliptic homogenization;
D O I
10.1137/060676118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with a numerical method for multiscale elliptic problems. Using the framework of the heterogeneous multiscale methods (HMM), we propose a micro-macro approach which combines the finite element method (FEM) for the macroscopic solver and the pseudospectral method for the microsolver. Unlike the micro-macro methods based on the standard FEM proposed so far, in the HMM we obtain, for periodic homogenization problems, a method that has almost-linear complexity in the number of degrees of freedom of the discretization of the macro(slow) variable.
引用
收藏
页码:1059 / 1084
页数:26
相关论文
共 30 条
[1]   Analysis of a heterogeneous multiscale FEM for problems in elasticity [J].
Abdulle, A .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (04) :615-635
[2]   Heterogeneous multiscale FEM for diffusion problems on rough surfaces [J].
Abdulle, A ;
Schwab, C .
MULTISCALE MODELING & SIMULATION, 2005, 3 (01) :195-220
[3]   On a priori error analysis of fully discrete heterogeneous multiscale FEM [J].
Abdulle, A .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :447-459
[4]   Finite difference heterogeneous multi-scale method for homogenization problems [J].
Abdulle, A ;
Weinan, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (01) :18-39
[5]  
[Anonymous], 2005, MEDIA ANAL TECHNIQUE
[6]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[7]  
Bernard S. G., 2012, Mem. Cl. Sci. Acad. Roy. Belg., P1
[8]   Mitoxantrone, vinorelbine and prednisone (MVD) in the treatment of metastatic hormonoresistant prostate cancer - a phase II trial [J].
Bernardi, D ;
Talamini, R ;
Zanetti, M ;
Simonelli, C ;
Vaccher, E ;
Spina, M ;
Tirelli, U .
PROSTATE CANCER AND PROSTATIC DISEASES, 2004, 7 (01) :45-49
[9]  
BERS L, 1957, LECTURES APPL MATH
[10]  
CANUTO C., 1987, Spectral Methods in Fluid Dynamics