Estimating macroeconomic models:: A likelihood approach

被引:175
作者
Fernandez-Villaverde, Jesus [1 ]
Rubio-Ramirez, Juan F.
机构
[1] Univ Penn, NBER, Philadelphia, PA 19104 USA
[2] Duke Univ, Durham, NC 27706 USA
[3] Fed Reserve Bank Atlanta, Atlanta, GA USA
基金
美国国家科学基金会;
关键词
D O I
10.1111/j.1467-937X.2007.00437.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper shows how particle filtering facilitates likelihood-based inference in dynamic macroeconomic models. The economies can be non-linear and/or non-normal. We describe how to use the output from the particle filter to estimate the structural parameters of the model, those characterizing preferences and technology, and to compare different economies. Both tasks can be implemented from either a classical or a Bayesian perspective. We illustrate the technique by estimating a business cycle model with investment-specific technological change, preference shocks, and stochastic volatility.
引用
收藏
页码:1059 / 1087
页数:29
相关论文
共 45 条
[1]  
AMISANO G, 2005, EURO AREA INFLATION
[2]  
AN S, 2007, IN PRESS ECONOMETRIC
[3]  
AN S, 2006, BAYESIAN ESTIMATION
[4]  
[Anonymous], 1995, FRONTIERS BUSINESS C
[5]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[6]   Comparing solution methods for dynamic equilibrium economies [J].
Aruoba, S. Boragan ;
Fernandez-Villaverde, Jesus ;
Rubio-Ramirez, Juan F. .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2006, 30 (12) :2477-2508
[7]  
BLANCHARD OJ, 2001, BROOKINGS PAP ECO AC, P187
[8]   UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM [J].
CHIB, S ;
GREENBERG, E .
AMERICAN STATISTICIAN, 1995, 49 (04) :327-335
[9]  
DELMORAL P, 2002, NUMERICAL METHODS ST
[10]  
DELNEGRO M, 2007, IN PRESS J BUSINESS