Singular statistics

被引:41
作者
Bogomolny, E
Gerland, U
Schmit, C
机构
[1] Univ Paris 11, Unite Rech, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[2] Univ Paris 11, CNRS, UMR 8626, F-91405 Orsay, France
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1103/PhysRevE.63.036206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the statistical distribution of zeros of random meromorphic functions whose poles are independent random variables. It is demonstrated that correlation functions of these zeros can be computed analytically, and explicit calculations are performed for the two-point correlation function. This problem naturally appears in, e.g., rank-1 perturbation of an integrable Hamiltonian and, in particular, when a delta -function potential is added to an integrable billiard.
引用
收藏
页数:16
相关论文
共 16 条
[11]  
BOHR A, 1989, NUCL STRUCTURE, V1, P302
[12]   Spectral form factors of rectangle billiards [J].
Marklof, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (01) :169-202
[13]  
MEHTA ML, 1965, RANDOM MATRICES
[14]  
Porter C. E., 1965, STAT THEORY SPECTRA
[15]   WAVE CHAOS IN SINGULAR QUANTUM BILLIARD [J].
SEBA, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (16) :1855-1858
[16]  
Watson G. N., 1922, TREATISE THEORY BESS