Mirror-symmetric tonotopic maps in human primary auditory cortex

被引:313
作者
Formisano, E
Kim, DS
Di Salle, F
van de Moortele, PF
Ugurbil, K
Goebel, R
机构
[1] Univ Maastricht, Fac Psychol, Dept Cognit Neurosci, NL-6200 MD Maastricht, Netherlands
[2] Univ Minnesota, Sch Med, Ctr Magnet Resonance Res CMRR, Minneapolis, MN 55455 USA
[3] Univ Naples Federico II, Dept Neuroradiol, Nuovo Policlin, I-80131 Naples, Italy
关键词
D O I
10.1016/S0896-6273(03)00669-X
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Understanding the functional organization of the human primary auditory cortex (PAC) is an essential step in elucidating the neural mechanisms underlying the perception of sound, including speech and music. Based on invasive research in animals, it is believed that neurons in human PAC that respond selectively with respect to the spectral content of a sound form one or more maps in which neighboring patches on the cortical surface respond to similar frequencies (tonotopic maps). The number and the cortical layout of such tonotopic maps in the human brain, however, remain unknown. Here we use silent, event-related functional magnetic resonance imaging at 7 Tesla and a cortex-based analysis of functional data to delineate with high spatial resolution the detailed topography of two tonotopic maps in two adjacent subdivisions of PAC. These maps share a low-frequency border, are mirror symmetric, and clearly resemble those of presumably homologous fields in the macaque monkey.
引用
收藏
页码:859 / 869
页数:11
相关论文
共 72 条
  • [21] A chronic microelectrode investigation of the tonotopic organization of human auditory cortex
    Howard, MA
    Volkov, IO
    Abbas, PJ
    Damasio, H
    Ollendieck, MC
    Granner, MA
    [J]. BRAIN RESEARCH, 1996, 724 (02) : 260 - 264
  • [22] SUSTAINED FIELDS OF TONES AND GLIDES REFLECT TONOTOPY OF THE AUDITORY-CORTEX
    HUOTILAINEN, M
    TIITINEN, H
    LAVIKAINEN, J
    ILMONIEMI, RJ
    PEKKONEN, E
    SINKKONEN, J
    LAINE, P
    NAATANEN, R
    [J]. NEUROREPORT, 1995, 6 (06) : 841 - 844
  • [23] Subdivisions of auditory cortex and processing streams in primates
    Kaas, JH
    Hackett, TA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) : 11793 - 11799
  • [24] COMPARISON OF RESPONSES IN THE ANTERIOR AND PRIMARY AUDITORY FIELDS OF THE FERRET CORTEX
    KOWALSKI, N
    VERSNEL, H
    SHAMMA, SA
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (04) : 1513 - 1523
  • [25] An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes
    Kriegeskorte, N
    Goebel, R
    [J]. NEUROIMAGE, 2001, 14 (02) : 329 - 346
  • [26] TONOTOPIC ORGANIZATION IN HUMAN AUDITORY-CORTEX REVEALED BY POSITRON EMISSION TOMOGRAPHY
    LAUTER, JL
    HERSCOVITCH, P
    FORMBY, C
    RAICHLE, ME
    [J]. HEARING RESEARCH, 1985, 20 (03) : 199 - 205
  • [27] EVOKED-POTENTIALS RECORDED FROM THE AUDITORY-CORTEX IN MAN - EVALUATION AND TOPOGRAPHY OF THE MIDDLE LATENCY COMPONENTS
    LIEGEOISCHAUVEL, C
    MUSOLINO, A
    BADIER, JM
    MARQUIS, P
    CHAUVEL, P
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1994, 92 (03): : 204 - 214
  • [28] LIEGEOISCHAUVEL C, 1991, BRAIN, V114, P139
  • [29] The functional anatomy of the normal human auditory system: Responses to 0.5 and 4.0 kHz tones at varied intensities
    Lockwood, AH
    Salvi, RJ
    Coad, ML
    Arnold, SA
    Wack, DS
    Murphy, BW
    Burkard, RF
    [J]. CEREBRAL CORTEX, 1999, 9 (01) : 65 - 76
  • [30] Neurophysiological investigation of the basis of the fMRI signal
    Logothetis, NK
    Pauls, J
    Augath, M
    Trinath, T
    Oeltermann, A
    [J]. NATURE, 2001, 412 (6843) : 150 - 157