Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores

被引:238
作者
Chen, VJ
Ma, PX
机构
[1] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biol & Mat Sci, Ann Arbor, MI 48109 USA
关键词
nano; fiber; scaffold; polymer; porous; tissue engineering;
D O I
10.1016/j.biomaterials.2003.08.058
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biodegradable polymers have been used extensively as scaffolding materials to regenerate new tissues. These scaffolds should possess certain physical characteristics including a three-dimensional structure, high porosity with an interconnected pore structure, and a suitable surface structure for cell attachment, proliferation, and differentiation. To mimic the fibrous architecture of type I collagen, nano-fibrous matrices have been created in our laboratory using a phase-separation technique of poly(L-lactic acid) (PLLA) solutions. In addition, biodegradable scaffolds with controlled interconnected spherical pore networks have been fabricated in our laboratory. In this work, these two techniques were combined to yield scaffolds with highly interconnected spherical macroporous structures and nano-fibrous architectures. Paraffin spheres were first fabricated with a dispersion method, and were thermally bonded to form an interconnected mold. PLLA solutions were cast over the paraffin sphere assembly and were thermally phase-separated to form nano-fibrous matrices. After leaching out the paraffin, synthetic nano-fibrous extracellular matrices with interconnected spherical pores were yielded. By utilizing this fabrication process, we are able to control the architecture of the scaffolds at several different levels, including the macroscopic shape of the scaffold, the spherical pore size, interfiber distance, and the fiber diameter at the nano-size scale. The inter-pore connectivity could be controlled by varying the heat treatment time of the paraffin spheres, and mechanical properties could be controlled by varying the porosity of the scaffolds. With an interconnected macroporous structure that promotes cell seeding throughout the interstices of the scaffold, and a synthetic collagen-like matrix, these novel matrices may be an excellent scaffold for tissue engineering. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2065 / 2073
页数:9
相关论文
共 38 条
[1]  
Abrams GA, 2000, CELL TISSUE RES, V299, P39, DOI 10.1007/s004410050004
[2]   DEDIFFERENTIATED CHONDROCYTES REEXPRESS THE DIFFERENTIATED COLLAGEN PHENOTYPE WHEN CULTURED IN AGAROSE GELS [J].
BENYA, PD ;
SHAFFER, JD .
CELL, 1982, 30 (01) :215-224
[3]   Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures [J].
Chu, TMG ;
Orton, DG ;
Hollister, SJ ;
Feinberg, SE ;
Halloran, JW .
BIOMATERIALS, 2002, 23 (05) :1283-1293
[4]   Cell interactions with three-dimensional matrices [J].
Cukierman, E ;
Pankov, R ;
Yamada, KM .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (05) :633-639
[5]   Taking cell-matrix adhesions to the third dimension [J].
Cukierman, E ;
Pankov, R ;
Stevens, DR ;
Yamada, KM .
SCIENCE, 2001, 294 (5547) :1708-1712
[6]   MOLECULAR CONFORMATION OF POLY(S-LACTIC ACID) [J].
DESANTIS, P ;
KOVACS, AJ .
BIOPOLYMERS, 1968, 6 (03) :299-&
[7]   BIODEGRADABLE MATERIALS OF POLY(L-LACTIC ACID) .1. MELT-SPUN AND SOLUTION-SPUN FIBERS [J].
ELING, B ;
GOGOLEWSKI, S ;
PENNINGS, AJ .
POLYMER, 1982, 23 (11) :1587-1593
[8]   INVESTIGATION OF STRUCTURE OF SOLUTION GROWN CRYSTALS OF LACTIDE COPOLYMERS BY MEANS OF CHEMICAL-REACTIONS [J].
FISCHER, EW ;
STERZEL, HJ ;
WEGNER, G .
KOLLOID-ZEITSCHRIFT AND ZEITSCHRIFT FUR POLYMERE, 1973, 251 (11) :980-990
[9]   Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing [J].
Giordano, RA ;
Wu, BM ;
Borland, SW ;
Cima, LG ;
Sachs, EM ;
Cima, MJ .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1996, 8 (01) :63-75
[10]   Self-assembly and mineralization of peptide-amphiphile nanofibers [J].
Hartgerink, JD ;
Beniash, E ;
Stupp, SI .
SCIENCE, 2001, 294 (5547) :1684-1688