Delayed preconditioning of myocardium: current perspectives

被引:81
作者
Baxter, GF [1 ]
Ferdinandy, P
机构
[1] UCL Hosp, Div Cardiol, Hatter Inst, London WC1E 6DB, England
[2] Univ Szeged, Dept Biochem, Szeged, Hungary
关键词
ischemia; ischemia-reperfusion; infarction; preconditioning; adaptation;
D O I
10.1007/s003950170041
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The protection conferred by ischemic preconditioning (PC) of myocardium occurs in a bimodal time course. The early cardioprotection wanes rapidly and is succeeded by a delayed phase of protection. This "second window" lasts for up to 72 hours, depending on species and end-point. A widely adopted paradigm for delayed PC is the following: 1) freely diffusible molecules or radicals, generated during the PC period, act in autocrine and/or paracrine manner as triggers of cellular adaptation; 2) they cause the activation of a protein kinase signal cascade; 3) the activated kinases phosphorylate important substrate proteins. In the case of delayed PC, it is thought that the phosphorylation of transcription factors, initiating the synthesis of late appearing effector proteins that promote cell survival during subsequent ischemia, may be a crucial event. Investigation of the proximal components of this sequence has altered our perceptions of several biological mediators, previously thought to be short acting, including adenosine, NO, free radicals and bradykinin. Signal transduction components include protein kinase C, tyrosine kinases and various mitogen- and stress-activated protein kinases but their patterns of regulation are complex and as yet poorly defined. Gene expression is modified in a regulated fashion to induce new proteins that promote cell repair and to protect against subsequent ischemia-reperfusion insult. It is likely that the complex nature of the preconditioning stimulus causes the activation of a variety of transcription factors, regulating a large number of target genes. So far, attention has focussed on a small number of protein products as potential distal mediators of delayed preconditioning. These include the heat shock proteins, manganese superoxide dismutase, inducible nitric oxide synthase, the ATP-sensitive potassium channel and cyclo-oxygenase-2.
引用
收藏
页码:329 / 344
页数:16
相关论文
共 113 条
[11]   Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart [J].
Bernardo, NL ;
D'Angelo, M ;
Okubo, S ;
Joy, A ;
Kukreja, RC .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 276 (04) :H1323-H1330
[12]   Delayed attenuation of myocardial ischemia with repeated exercise in subjects with stable angina: a possible model for the second window of protection? [J].
Bilinska, M ;
Rudnicki, S ;
Beresewicz, A .
BASIC RESEARCH IN CARDIOLOGY, 2000, 95 (05) :418-423
[13]   Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart - p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion [J].
Bogoyevitch, MA ;
GillespieBrown, J ;
Ketterman, AJ ;
Fuller, SJ ;
BenLevy, R ;
Ashworth, A ;
Marshall, CJ ;
Sugden, PH .
CIRCULATION RESEARCH, 1996, 79 (02) :162-173
[14]   The late phase of preconditioning [J].
Bolli, R .
CIRCULATION RESEARCH, 2000, 87 (11) :972-983
[15]   The nitric oxide hypothesis of late preconditioning [J].
Bolli, R ;
Dawn, B ;
Tang, XL ;
Qiu, Y ;
Ping, P ;
Xuan, YT ;
Jones, WK ;
Takano, H ;
Guo, Y ;
Zhang, J .
BASIC RESEARCH IN CARDIOLOGY, 1998, 93 (05) :325-338
[16]   Delayed cardioprotection in a human cardiomyocyte-derived cell line:: the role of adenosine, p38MAP kinase and mitochondrial KATP [J].
Carroll, R ;
Yellon, DM .
BASIC RESEARCH IN CARDIOLOGY, 2000, 95 (03) :243-249
[17]   Ischemic tolerance in the brain [J].
Chen, J ;
Simon, R .
NEUROLOGY, 1997, 48 (02) :306-311
[18]   ROLE OF ADENOSINE IN PATHOGENESIS OF ANGINAL PAIN [J].
CREA, F ;
PUPITA, G ;
GALASSI, AR ;
ELTAMIMI, H ;
KASKI, JC ;
DAVIES, G ;
MASERI, A .
CIRCULATION, 1990, 81 (01) :164-172
[19]  
Cumming DVE, 1996, BASIC RES CARDIOL, V91, P79
[20]  
Currie RW, 1998, DEV CARDIOVASC MED, V207, P135