The coisotropic subgroup structure of SLq(2, R)

被引:6
作者
Bonechi, F
Ciccoli, N
Giachetti, R
Sorace, E
Tarlini, M
机构
[1] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy
[2] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy
[3] Univ Perugia, Dipartimento Matemat, I-06100 Perugia, Italy
关键词
SLq(2; R); coisotropic quantum subgroups; quantum homogeneous spaces;
D O I
10.1016/S0393-0440(00)00039-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the coisotropic subgroup structure of standard SLq(2, R) and the corresponding embeddable quantum homogeneous spaces. While the subgroups S-1 and R-4 survive undeformed in the quantization as coalgebras, we show that R is deformed to a family of quantum coisotropic subgroups whose coalgebra cannot be extended to an Hopf algebra. We explicitly describe the quantum homogeneous spaces and their double cosets. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:190 / 200
页数:11
相关论文
共 15 条
[1]   Unitarity of induced representations from coisotropic quantum subgroups [J].
Bonechi, F ;
Ciccoli, N ;
Giachetti, R ;
Sorace, E ;
Tarlini, M .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (01) :17-31
[2]   Quantum homogeneous spaces as quantum quotient spaces [J].
Brzezinski, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) :2388-2399
[3]   Coalgebra bundles [J].
Brzezinski, T ;
Majid, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (02) :467-492
[4]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[5]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[6]  
BRZEZINSKI T, QA9807052
[7]   Induction of quantum group representations [J].
Ciccoli, N .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 31 (2-3) :96-110
[8]   Quantization of co-isotropic subgroups [J].
Ciccoli, N .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 42 (02) :123-138
[9]   QUANTUM HOMOGENEOUS SPACES, DUALITY AND QUANTUM 2-SPHERES [J].
DIJKHUIZEN, MS ;
KOORNWINDER, TH .
GEOMETRIAE DEDICATA, 1994, 52 (03) :291-315
[10]   Quantum Lobachevsky planes [J].
Leitenberger, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) :3131-3140