A reappraisal of the electron diffusion length in solid-state dye-sensitized solar cells

被引:80
作者
Jennings, J. R. [1 ]
Peter, L. M. [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1021/jp076457d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of dye-sensitized solar cells (DSCs) depends on the competition between transport and interfacial recombination of electrons. A key parameter in this context is the electron diffusion length, which is given by L-n = (D tau)(1/2), where D and tau are, respectively, the diffusion coefficient and lifetime of mobile electrons. A new approach to the reliable estimation of L-n is described, which involves use of a titanium contact to measure the short-circuit value of the electron quasi-Fermi level on the side of the TiO2 film furthest from the anode contact. This information is used to define conditions under which the effects of electron trapping/detrapping can be eliminated from the calculation of L-n. The method is illustrated by measurements of a solid-state DSC based on the organic hole conductor 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene (spiro-OMeTAD), which show that L-n is significantly greater than had been thought previously.
引用
收藏
页码:16100 / 16104
页数:5
相关论文
共 19 条