Energy transfer from Forster-Dexter theory to quantum coherent light-harvesting

被引:187
作者
Olaya-Castro, Alexandra [1 ]
Scholes, Gregory D. [2 ,3 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
[2] Univ Toronto, Inst Opt Sci, Dept Chem, Toronto, ON M5S 3H6, Canada
[3] Univ Toronto, Ctr Quantum Informat & Quantum Control, Toronto, ON M5S 3H6, Canada
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
electronic energy transfer; electronic coherence; FRET; Forster theory; two-dimensional spectroscopy; light-harvesting; EXCITON DELOCALIZATION LENGTH; LONG-RANGE ELECTRON; EXCITATION TRANSFER; TRANSFER RATES; RATE EXPRESSIONS; ANTENNA SYSTEM; AB-INITIO; FLUORESCENCE ANISOTROPY; CONJUGATED POLYMER; TRANSFER PATHWAYS;
D O I
10.1080/0144235X.2010.537060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electronic excitation energy transfer is ubiquitous in a variety of multichromophoric systems and has been a subject of numerous investigations in the last century. Recently, sophisticated experimental and theoretical studies of excited state dynamics have been developed with the purpose of attaining a more detailed picture of the coherent and incoherent quantum dynamics relevant to energy transfer processes in a variety of molecular aggregates. In particular, great efforts have been made towards finding experimental signatures of coherent superpositions of electronic states in some light-harvesting antenna complexes and to understand their practical implications. This review intends to provide some foundations, and perhaps inspirations, of new directions of research. In particular, we emphasise current opinions of several effects that go beyond normal Forster theory and highlight open problems in the description of energy transfer beyond standard approximations as well as the need of new approaches to characterise the 'quantumness' of excited states and energy transfer dynamics in multichromophoric systems.
引用
收藏
页码:49 / 77
页数:29
相关论文
共 219 条
[101]   Theory of coherent resonance energy transfer [J].
Jang, Seogjoo ;
Cheng, Yuan-Chung ;
Reichman, David R. ;
Eaves, Joel D. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (10)
[102]   Multichromophoric Forster resonance energy transfer [J].
Jang, SJ ;
Newton, MD ;
Silbey, RJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :218301-1
[103]   Quantum pathways for resonance energy transfer [J].
Jenkins, RD ;
Daniels, GJ ;
Andrews, DL .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (24) :11442-11448
[104]  
JENSEN RA, 2008, J PHYS CHEM C, V16, P1886
[105]   Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides [J].
Jimenez, R ;
Dikshit, SN ;
Bradforth, SE ;
Fleming, GR .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (16) :6825-6834
[106]   Two-dimensional femtosecond spectroscopy [J].
Jonas, DM .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2003, 54 :425-463
[107]   Optical analogs of 2D NMR [J].
Jonas, DM .
SCIENCE, 2003, 300 (5625) :1515-1517
[108]   Probability distribution analysis of single-molecule fluorescence anisotropy and resonance energy transfer [J].
Kalinin, Stanislav ;
Felekyan, Suren ;
Antonik, Matthew ;
Seidel, Claus A. M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (34) :10253-10262
[109]  
Kallmann H, 1929, Z PHYS CHEM B-CHEM E, V2, P207
[110]   Intramolecular energy transfer within butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms [J].
Kelley, Richard F. ;
Lee, Suk Joong ;
Wilson, Thea M. ;
Nakamura, Yasuyuki ;
Tiede, David M. ;
Osuka, Atsuhiro ;
Hupp, Joseph T. ;
Wasielewski, Michael R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (13) :4277-4284