Optimization of carbon nanotube synthesis from porous anodic Al-Fe-Al templates

被引:19
作者
Maschmann, Matthew R.
Franklin, Aaron D.
Sands, Timothy D.
Fisher, Timothy S. [1 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
关键词
D O I
10.1016/j.carbon.2007.05.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A parametric study of carbon nanotube (CNT) synthesis from catalytically active porous anodic Al-Fe-Al multilayer templates was conducted with respect to pore aspect ratio, Fe layer thickness, CNT synthesis temperature, and pre-anodization thermal annealing. Performance metrics included CNT catalytic activity and the pore wall integrity at the Al-Fe-Al interface. The observed CNT density was a strong function of pore diameter, synthesis temperature and pre-anodization annealing of the catalyst film. Vertical pore wall integrity at the Al-Fe-Al interface was optimized by selection of pre-anodization annealing conditions, with interfacial void formation observed in the absence of this technique. Based on CNT growth rates, an activation energy of 0.52 eV was observed for CNT synthesis for all film structures, regardless of pore aspect ratio. The optimization of templated CNT synthesis is expected to assist in the development of high-density vertically oriented CNT-based devices. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2290 / 2296
页数:7
相关论文
共 31 条
[1]   Field emission from single-wall carbon nanotube films [J].
Bonard, JM ;
Salvetat, JP ;
Stockli, T ;
de Heer, WA ;
Forro, L ;
Chatelain, A .
APPLIED PHYSICS LETTERS, 1998, 73 (07) :918-920
[2]   Large-area synthesis of carbon nanofibres at room temperature [J].
Boskovic, BO ;
Stolojan, V ;
Khan, RUA ;
Haq, S ;
Silva, SRP .
NATURE MATERIALS, 2002, 1 (03) :165-168
[3]   Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method [J].
Che, G ;
Lakshmi, BB ;
Martin, CR ;
Fisher, ER ;
Ruoff, RS .
CHEMISTRY OF MATERIALS, 1998, 10 (01) :260-267
[4]   Temperature selective growth of carbon nanotubes by chemical vapor deposition [J].
Ducati, C ;
Alexandrou, I ;
Chhowalla, M ;
Amaratunga, GAJ ;
Robertson, J .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (06) :3299-3303
[5]   In-place fabrication of nanowire electrode arrays for vertical nanoelectronics on Si substrates [J].
Franklin, Aaron D. ;
Maschmann, Matthew R. ;
DaSilva, Manuel ;
Janes, David B. ;
Fisher, Timothy S. ;
Sands, Timothy D. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (02) :343-347
[6]   The behaviour of iron during anodic oxidation of sputtering-deposited Al-Fe alloys [J].
Habazaki, H ;
Shimizu, K ;
Skeldon, P ;
Thompson, GE ;
Wood, GC .
CORROSION SCIENCE, 2001, 43 (07) :1393-1402
[7]   Development of iron-rich layers during anodic oxidation of sputter-deposited Al-4 atom % Fe alloy [J].
Habazaki, H ;
Takahiro, K ;
Yamaguchi, S ;
Shimizu, K ;
Skeldon, P ;
Thompson, GE ;
Wood, GC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (07) :2502-2507
[8]   Surface diffusion:: The low activation energy path for nanotube growth -: art. no. 036101 [J].
Hofmann, S ;
Csányi, G ;
Ferrari, AC ;
Payne, MC ;
Robertson, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)
[9]   Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition [J].
Hofmann, S ;
Ducati, C ;
Robertson, J ;
Kleinsorge, B .
APPLIED PHYSICS LETTERS, 2003, 83 (01) :135-137
[10]   Ballistic carbon nanotube field-effect transistors [J].
Javey, A ;
Guo, J ;
Wang, Q ;
Lundstrom, M ;
Dai, HJ .
NATURE, 2003, 424 (6949) :654-657