The Orc4p and Orc5p subunits of the Xenopus and human origin recognition complex are related to Orc1p and Cdc6p

被引:81
作者
Tugal, T
Zou-Yang, XH
Gavin, K
Pappin, D
Canas, B
Kobayashi, R
Hunt, T
Stillman, B
机构
[1] Imperial Canc Res Fund, Clare Hall Labs, S Mimms EN6 3LD, Herts, England
[2] Imperial Canc Res Fund, London WC2A 3PX, England
[3] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
关键词
D O I
10.1074/jbc.273.49.32421
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The location of origins of DNA replication within the Saccharomyces cerevisiae genome is primarily determined by the origin recognition complex (ORC) interacting with specific DNA sequences. The analogous situation in vertebrate cells is far less clear, although ORC subunits have been identified in several vertebrate organisms including Xenopus laevis. Monoclonal antibodies were raised against Xenopus Orc1p and used for single-step immunoaffinity purification of the entire ORC from an egg extract. Six polypeptides (similar to 110, 68, 64, 48, 43, and 27 kDa) copurified with Xenopus Orc1p, Protein sequencing also showed the 64-kDa protein to be the previously identified Xenopus Orc2p. Microsequencing of the 43- and 48-kDa proteins that copurified with Orc1p and Orc2p led to their identification as the Orc4p and Orc5p subunits, respectively. Peptide sequences from the 43-kDa protein also allowed the isolation of cDNAs encoding the Xenopus, mouse, and human ORC4 subunits, Human ORC5 was also cloned; its sequence displayed extensive homology to both Drosophila and yeast ORC5. Surprisingly, comparison of the amino acid sequences of Orc1p, Orc4p, and Orc5p suggests that they are structurally related to each other and to the replication initiation protein, Cdc6p. Finally, we present the sequence of the putative Xenopus and human Orc3p.
引用
收藏
页码:32421 / 32429
页数:9
相关论文
共 71 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[3]   YEAST ORIGIN RECOGNITION COMPLEX FUNCTIONS IN TRANSCRIPTION SILENCING AND DNA-REPLICATION [J].
BELL, SP ;
KOBAYASHI, R ;
STILLMAN, B .
SCIENCE, 1993, 262 (5141) :1844-1849
[4]   THE MULTIDOMAIN STRUCTURE OF ORC1P REVEALS SIMILARITY TO REGULATORS OF DNA-REPLICATION AND TRANSCRIPTIONAL SILENCING [J].
BELL, SP ;
MITCHELL, J ;
LEBER, J ;
KOBAYASHI, R ;
STILLMAN, B .
CELL, 1995, 83 (04) :563-568
[5]   ATP-DEPENDENT RECOGNITION OF EUKARYOTIC ORIGINS OF DNA-REPLICATION BY A MULTIPROTEIN COMPLEX [J].
BELL, SP ;
STILLMAN, B .
NATURE, 1992, 357 (6374) :128-134
[6]   PREVENTING RE-REPLICATION OF DNA IN A SINGLE-CELL CYCLE - EVIDENCE FOR A REPLICATION LICENSING FACTOR [J].
BLOW, JJ .
JOURNAL OF CELL BIOLOGY, 1993, 122 (05) :993-1002
[7]   AUTORADIOGRAPHY OF HELA CELL DNA [J].
CAIRNS, J .
JOURNAL OF MOLECULAR BIOLOGY, 1966, 15 (01) :372-&
[8]   Role for a Xenopus Orc2-related protein in controlling DNA replication [J].
Carpenter, PB ;
Mueller, PR ;
Dunphy, WG .
NATURE, 1996, 379 (6563) :357-360
[9]   An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast [J].
Cocker, JH ;
Piatti, S ;
Santocanale, C ;
Nasmyth, K ;
Diffley, JFX .
NATURE, 1996, 379 (6561) :180-182
[10]   The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts [J].
Coleman, TR ;
Carpenter, PB ;
Dunphy, WG .
CELL, 1996, 87 (01) :53-63