An overview of enzymatic production of biodiesel

被引:434
作者
Ranganathan, Srivathsan Vembanur [1 ]
Narasimhan, Srinivasan Lakshmi [1 ]
Muthukumar, Karuppan [1 ]
机构
[1] Anna Univ, AC Coll Technol, Dept Chem Engn, Madras 600025, Tamil Nadu, India
关键词
lipase; biodiesel; transesterification; immobilization; whole cell;
D O I
10.1016/j.biortech.2007.04.060
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Biodiesel production has received considerable attention in the recent past as a biodegradable and nonpolluting fuel. The production of biodiesel by transesterification process employing alkali catalyst has been industrially accepted for its high conversion and reaction rates. Recently, enzymatic transesterification has attracted much attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. But the cost of enzyme remains a barrier for its industrial implementation. In order to increase the cost effectiveness of the process, the enzyme (both intracellular and extracellular) is reused by immobilizing in a suitable biomass support particle and that has resulted in considerable increase in efficiency. But the activity of immobilized enzyme is inhibited by methanol and glycerol which are present in the reacting mixture. The use of tert-butanol as solvent, continuous removal of glycerol, stepwise addition of methanol are found to reduce the inhibitory effects thereby increasing the cost effectiveness of the process. The present review analyzes these methods reported in literature and also suggests a suitable method for commercialization of the enzymatic process. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3975 / 3981
页数:7
相关论文
共 39 条
[1]   Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils [J].
Abigor, RD ;
Uadia, PO ;
Foglia, TA ;
Haas, MJ ;
Jones, KC ;
Okpefa, E ;
Obibuzor, JU ;
Bafor, ME .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2000, 28 :979-981
[2]   Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production [J].
Ban, K ;
Hama, S ;
Nishizuka, K ;
Kaieda, M ;
Matsumoto, T ;
Kondo, A ;
Noda, H ;
Fukuda, H .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2002, 17 (3-5) :157-165
[3]   Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles [J].
Ban, K ;
Kaieda, M ;
Matsumoto, T ;
Kondo, A ;
Fukuda, H .
BIOCHEMICAL ENGINEERING JOURNAL, 2001, 8 (01) :39-43
[4]   Prospects of biodiesel production from vegetables oils in India [J].
Barnwal, BK ;
Sharma, MP .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2005, 9 (04) :363-378
[5]   Enzymatic biodiesel production from sunflower oil by candida antarctica lipase in a solvent-free system [J].
Bélafi-Bakó, K ;
Kovács, F ;
Gubicza, L ;
Hancsók, J .
BIOCATALYSIS AND BIOTRANSFORMATION, 2002, 20 (06) :437-439
[6]   Regeneration of immobilized Candida antarctica lipase for transesterification [J].
Chen, JW ;
Wu, WT .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2003, 95 (05) :466-469
[7]   Biodiesel from sunflower oil in supercritical methanol with calcium oxide [J].
Demirbas, Ayhan .
ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (03) :937-941
[8]   Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors [J].
Du, W ;
Xu, YY ;
Liu, DH ;
Zeng, J .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2004, 30 (3-4) :125-129
[9]  
FOGLIA TA, 1998, Patent No. 5713965
[10]   VARIABLES AFFECTING THE YIELDS OF FATTY ESTERS FROM TRANSESTERIFIED VEGETABLE-OILS [J].
FREEDMAN, B ;
PRYDE, EH ;
MOUNTS, TL .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1984, 61 (10) :1638-1643