The transcriptional regulator CPRF1: Expression analysis and gene structure

被引:13
作者
Feldbrugge, M [1 ]
Hahlbrock, K [1 ]
Weisshaar, B [1 ]
机构
[1] MAX PLANCK INST ZUCHTUNGSFORSCH,BIOCHEM ABT,D-50829 COLOGNE,GERMANY
来源
MOLECULAR & GENERAL GENETICS | 1996年 / 251卷 / 06期
关键词
trans-acting factor; light induction; cycloheximide; chalcone synthase; ACGT element;
D O I
10.1007/s004380050210
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many eukaryotic DNA-binding proteins share a conserved amino acid sequence known as the basic region leucine zipper (bZIP) domain. bZIP proteins recognise DNA, upon dimerization, in a sequence-specific manner. The Common Plant Regulatory Factor 1 (CPRF1) is a bZIP transcription factor from parsley (Petroselinum crispum), which recognises defined elements containing ACGT cores. CPRF1 genomic DNA was cloned and the gene was sequenced. Analysis of the sequence data revealed the existence of 12 exons and 11 introns within a stretch of about 9 kb. A second RNA species hybridising to CPRF1 probes was identified as an alternatively spliced, additional CPRF1 transcript containing intron 8. This polyadenylated RNA species showed accumulation characteristics very similar to those of the CPRF1 mRNA. CPRF1 specifically binds an ACGT-containing element which is located within the composite regulatory unit that is necessary and sufficient for light activation of the parsley chalcone synthase (CHS) minimal promoter. Expression studies at the mRNA level demonstrated that CPRF1 mRNA is present in all organs of light-grown plants in which CHS mRNA expression is detectable, and light-dependent CHS mRNA accumulation was shown to be blocked by cycloheximide. Therefore, translation of a protein factor, possibly CPRF1, may be a prerequisite for CHS promoter activation.
引用
收藏
页码:619 / 627
页数:9
相关论文
共 58 条
[1]   ISOLATION AND MOLECULAR CHARACTERIZATION OF POSF21, AN ARABIDOPSIS-THALIANA GENE WHICH SHOWS CHARACTERISTICS OF A B-ZIP CLASS TRANSCRIPTION FACTOR [J].
AESCHBACHER, RA ;
SCHROTT, M ;
POTRYKUS, I ;
SAUL, MW .
PLANT JOURNAL, 1991, 1 (03) :303-316
[2]   HOMODIMERIC AND HETERODIMERIC LEUCINE ZIPPER PROTEINS AND NUCLEAR FACTORS FROM PARSLEY RECOGNIZE DIVERSE PROMOTER ELEMENTS WITH ACGT CORES [J].
ARMSTRONG, GA ;
WEISSHAAR, B ;
HAHLBROCK, K .
PLANT CELL, 1992, 4 (05) :525-537
[3]   IDENTIFICATION OF THE AUXIN-RESPONSIVE ELEMENT, AUXRE, IN THE PRIMARY INDOLEACETIC ACID-INDUCIBLE GENE, PS-IAA4/5, OF PEA (PISUM-SATIVUM) [J].
BALLAS, N ;
WONG, LM ;
THEOLOGIS, A .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 233 (04) :580-596
[4]   A CATALOG OF SPLICE JUNCTION AND PUTATIVE BRANCH POINT SEQUENCES FROM PLANT INTRONS [J].
BROWN, JWS .
NUCLEIC ACIDS RESEARCH, 1986, 14 (24) :9549-9559
[5]   TRANSCRIPTION OF PLANT DEFENSE GENES IN RESPONSE TO UV-LIGHT OR FUNGAL ELICITOR [J].
CHAPPELL, J ;
HAHLBROCK, K .
NATURE, 1984, 311 (5981) :76-78
[6]   A COMPREHENSIVE SET OF SEQUENCE-ANALYSIS PROGRAMS FOR THE VAX [J].
DEVEREUX, J ;
HAEBERLI, P ;
SMITHIES, O .
NUCLEIC ACIDS RESEARCH, 1984, 12 (01) :387-395
[7]   HOW BIG IS THE UNIVERSE OF EXONS [J].
DORIT, RL ;
SCHOENBACH, L ;
GILBERT, W .
SCIENCE, 1990, 250 (4986) :1377-1382
[9]   FUNCTIONAL-ANALYSIS OF A LIGHT-RESPONSIVE PLANT BZIP TRANSCRIPTIONAL REGULATOR [J].
FELDBRUGGE, M ;
SPRENGER, M ;
DINKELBACH, M ;
YAZAKI, K ;
HARTER, K ;
WEISSHAAR, B .
PLANT CELL, 1994, 6 (11) :1607-1621
[10]   PLANT BZIP PROTEINS GATHER AT ACGT ELEMENTS [J].
FOSTER, R ;
IZAWA, T ;
CHUA, NH .
FASEB JOURNAL, 1994, 8 (02) :192-200