On consistency of kernel density estimators for randomly censored data:: Rates holding uniformly over adaptive intervals

被引:79
作者
Giné, E [1 ]
Guillou, A
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Paris 06, LSTA, F-75252 Paris, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2001年 / 37卷 / 04期
基金
美国国家科学基金会;
关键词
censored data; uniform almost sure rates; product limit estimator; non-parametric density estimation; kernel density estimators; exponential inequalities;
D O I
10.1016/S0246-0203(01)01081-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the usual right-censored data situation, let f(n), n is an element of N, denote the convolution of the Kaplan-Meier product limit estimator with the kernels a(n)(-1) K(./a(n)), where K is a smooth probability density with bounded support and a(n) --> 0. That is, f(n) is the usual kernel density estimator based on Kaplan-Meier. Let (f) over bar (n) denote the convolution of the distribution of the uncensored data, which is assumed to have a bounded density, with the same kernels. For each n, let J(n) denote the half line with right end point Z(n(1-epsilonn)),(n) - a(n), where epsilon (n) --> 0 and, for each m, Z(m,n) is the mth order statistic of the censored data. It is shown that, under some mild conditions on a(n) and epsilon (n) sup(Jn) / f(n) (t) - (f) over bar (n)(t)/ converges a.s. to zero as n --> infinity at least as fast as root /log(a(n) boolean AND epsilon (n))//(na(n)epsilon (n)). For epsilon (n) = constant, this rate compares, up to constants, with the exact rate for fixed intervals. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:503 / 522
页数:20
相关论文
共 16 条
[1]  
Aalen O., 1976, Scandinavian Journal of Statistics Theory and Applications, V3, P15
[2]   PROBABILITY-INEQUALITIES FOR EMPIRICAL PROCESSES AND A LAW OF THE ITERATED LOGARITHM [J].
ALEXANDER, KS .
ANNALS OF PROBABILITY, 1984, 12 (04) :1041-1067
[3]   A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator [J].
Bitouzé, D ;
Laurent, B ;
Massart, P .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (06) :735-763
[4]   LARGE SAMPLE STUDY OF LIFE TABLE AND PRODUCT LIMIT ESTIMATES UNDER RANDOM CENSORSHIP [J].
BRESLOW, N ;
CROWLEY, J .
ANNALS OF STATISTICS, 1974, 2 (03) :437-453
[5]  
Csorgo S, 1996, ANN STAT, V24, P2744
[6]  
de la Pena V.H., 1999, Decoupling, From dependence to independence, Randomly stopped processes. U-statistics and processes. Martingales and beyond, Probability and its Applications (New York)
[7]   KERNEL DENSITY AND HAZARD FUNCTION ESTIMATION IN THE PRESENCE OF CENSORING [J].
DIEHL, S ;
STUTE, W .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 25 (02) :299-310
[8]   An empirical process approach to the uniform consistency of kernel-type function estimators [J].
Einmahl, U ;
Mason, DM .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (01) :1-37
[9]   Laws of the iterated logarithm for censored data [J].
Giné, E ;
Guillou, A .
ANNALS OF PROBABILITY, 1999, 27 (04) :2042-2067
[10]   NONPARAMETRIC-ESTIMATION FROM INCOMPLETE OBSERVATIONS [J].
KAPLAN, EL ;
MEIER, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1958, 53 (282) :457-481