Assembly of functional CFTR chloride channels

被引:181
作者
Riordan, JR [1 ]
机构
[1] Mayo Clin Scottsdale, Coll Med, Scottsdale, AZ 85259 USA
关键词
ligand-gated; hydrolyzable-ligand; monomeric channel; CFTR domains; CFTR activation;
D O I
10.1146/annurev.physiol.67.032003.154107
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The assembly of the cystic fibrosis transmembrane regulator (CFTR) chloride channel is of interest from the broad perspective of understanding how ion channels and ABC transporters are formed as well as dealing with the mis-assembly of CFTR in cystic fibrosis. CFTR is functionally distinct from other ABC transporters because it permits bidirectional permeation of anions rather than vectorial transport of solutes. This adaptation of the ABC transporter structure can be rationalized by considering CFTR as a hydrolyzable-ligand-gated channel with cytoplasmic ATP as ligand. Channel gating is initiated by ligand binding when the protein is also phosphorylated by protein kinase A and made reversible by ligand hydrolysis. The two nucleotide-binding sites play different roles in channel activation. CFTR self-associates, possibly as a function of its activation, but most evidence, including the low-resolution three-dimensional structure, indicates that the channel is monomeric. Domain assembly and interaction within the monomer is critical in maturation, stability, and function of the protein. Disease-associated mutations, including the most common, Delta F508, interfere with domain folding and association, which occur both co- and post-translationally. Intermolecular interactions of mature CFTR have been detected primarily with the N- and C-terminal tails, and these interactions have some impact not only on channel function but also on localization and processing within the cell. The biosynthetic processing of the nascent polypeptide leading to channel assembly involves transient interactions with numerous chaperones and enzymes on both sides of the endoplasmic reticulum. membrane.
引用
收藏
页码:701 / 718
页数:22
相关论文
共 116 条
[1]   The ABCs of immunology:: Structure and function of TAP, the transporter associated with antigen processing [J].
Abele, R ;
Tampé, R .
PHYSIOLOGY, 2004, 19 :216-224
[2]   Cystic fibrosis transmembrane conductance regulator - Structure and function of an epithelial chloride channel [J].
Akabas, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (06) :3729-3732
[3]  
ALEKSANDROV A, 2004, UNPUB FEBS LETT
[4]   The non-hydrolytic pathway of cystic fibrosis transmembrane conductance regulator ion channel gating [J].
Aleksandrov, AA ;
Chang, XB ;
Aleksandrov, L ;
Riordan, JR .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 528 (02) :259-265
[5]   Regulation of CFTR ion channel gating by MgATP [J].
Aleksandrov, AA ;
Riordan, JR .
FEBS LETTERS, 1998, 431 (01) :97-101
[6]   Nucleoside triphosphate pentose ring impact on CFTR gating and hydrolysis [J].
Aleksandrov, AA ;
Aleksandrov, L ;
Riordan, JR .
FEBS LETTERS, 2002, 518 (1-3) :183-188
[7]   The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover [J].
Aleksandrov, L ;
Aleksandrov, AA ;
Chang, XB ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (18) :15419-15425
[8]   ALTERED PLASMA-MEMBRANE ULTRASTRUCTURE IN MULTIDRUG-RESISTANT CELLS [J].
ARSENAULT, AL ;
LING, V ;
KARTNER, N .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 938 (02) :315-321
[9]   COUPLING OF CFTR CL- CHANNEL GATING TO AN ATP HYDROLYSIS CYCLE [J].
BAUKROWITZ, T ;
HWANG, TC ;
GADSBY, DC ;
NAIRN, AC .
NEURON, 1994, 12 (03) :473-482
[10]   PURIFICATION AND FUNCTIONAL RECONSTITUTION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) [J].
BEAR, CE ;
LI, CH ;
KARTNER, N ;
BRIDGES, RJ ;
JENSEN, TJ ;
RAMJEESINGH, M ;
RIORDAN, JR .
CELL, 1992, 68 (04) :809-818