Toward a quantitative description of large-scale neocortical dynamic function and EEG

被引:301
作者
Nunez, PL [1 ]
机构
[1] Tulane Univ, Dept Biomed Engn, Brain Phys Grp, New Orleans, LA 70118 USA
[2] Swinburne Univ Technol, Brain Sci Inst, Melbourne, Vic 3122, Australia
关键词
binding problem; cell assemblies; coherence; EEG; limit cycles; neocortical dynamics; pacemakers; phase locking; spatial scale; standing waves; synchronization;
D O I
10.1017/S0140525X00003253
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
A general conceptual framework for large-scale neocortical dynamics based on data from many laboratories is applied to a variety of experimental designs, spatial scales, and brain states. Partly distinct, but interacting local processes (e.g., neural networks) arise from functional segregation. Global processes arise from functional integration and can facilitate (top down) synchronous activity in remote cell groups that function simultaneously at several different spatial scales. Simultaneous local processes may help drive (bottom up) macroscopic global dynamics observed with electroencephalography (EEG) or magnetoencephalography (MEG). A local/global dynamic theory that is consistent with EEG data and the proposed conceptual framework is outlined. This theory is neutral about properties of neural networks embedded in macroscopic fields, but its global component makes several qualitative and semiquantitative predictions about EEG measures of traveling and standing wave phenomena. A more general "metatheory" suggests what targe-scale quantitative theories of neocortical dynamics may be like when more accurate treatment of local and nonlinear effects is achieved. The theory describes the dynamics of excitatory and inhibitory synaptic action fields. EEC and MEG provide large-scale estimates of modulation of these synaptic fields around background levels. Brain states are determined by neuromodulatory control parameters. Purely local states are dominated by local feedback gains and rise and decay times of postsynaptic potentials. Dominant local frequencies vary with brain region. Other states are purely global, with moderate to high coherence over large distances. Multiple global mode frequencies arise from a combination of delays in corticocortical axons and neocortical boundary conditions. Global frequencies are identical in all cortical regions, but most states involve dynamic interactions between local networks and the global system. EEC frequencies may involve a "matching" of local resonant frequencies with one or more of the many, closely spaced global frequencies.
引用
收藏
页码:371 / +
页数:34
相关论文
共 121 条
  • [91] Regan D, 1989, HUMAN BRAIN ELECTROP
  • [92] Steady states and global dynamics of electrical activity in the cerebral cortex
    Robinson, PA
    Rennie, CJ
    Wright, JJ
    Bourke, PD
    [J]. PHYSICAL REVIEW E, 1998, 58 (03): : 3557 - 3571
  • [93] Propagation and stability of waves of electrical activity in the cerebral cortex
    Robinson, PA
    Rennie, CJ
    Wright, JJ
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 826 - 840
  • [94] Synchronization between prefrontal and posterior association cortex during human working memory
    Sarnthein, J
    Petsche, H
    Rappelsberger, P
    Shaw, GL
    von Stein, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (12) : 7092 - 7096
  • [95] Scott A., 1995, STAIRWAY MIND
  • [96] SHAW GR, 1991, THESIS U ALBERTA EDM
  • [97] SILBERSTEIN RB, 1995, NEOCORTICAL DYNAMICS, P591
  • [98] SILBERSTEIN RB, 1998, 12 INT C EV REL POT
  • [99] SINGER W, 1993, ANNU REV PHYSIOL, V55, P349, DOI 10.1146/annurev.ph.55.030193.002025
  • [100] Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials
    Srinivasan, R
    Nunez, PL
    Tucker, DM
    Silberstein, RB
    Cadusch, PJ
    [J]. BRAIN TOPOGRAPHY, 1996, 8 (04) : 355 - 366